osteogenic property
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
He Xia ◽  
Lun Dong ◽  
Min Hao ◽  
Yuan Wei ◽  
Jiazhi Duan ◽  
...  

Cancellous bone plays an indispensable role in the skeletal system due to its various functions and high porosity. In this work, chitosan and hydroxyapatite nanowires (CS@HAP NWs) hybrid nanostructured scaffolds with suitable mechanical properties, high porosity and a fine porous structure were prepared to simulate the 3-dimensional structure of cancellous bone. The 3D-hybrid scaffolds promote cell adhesion and the migration of human adipose-derived stem cells (hADSCs) inside the scaffolds. The cavities in the scaffolds provide space for the hADSCs proliferation and differentiation. Moreover, the various contents of HAP and the induced mechanical property changes regulate the differentiation of hADSCs toward osteoblasts. Overall, cellular fate regulation of hADSCs via rationally engineered HAP-based hybrid scaffolds is a facile and effective approach for bone tissue engineering.


2021 ◽  
Vol 2 ◽  
Author(s):  
Xiao Han ◽  
Zhipeng Fan

Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cell with the potential of self-renewal and multidirectional differentiation. They can be obtained from a variety of tissues and can differentiate into a variety of cell types under different induction conditions, including osteoblasts. Because of this osteogenic property, MSCs have attracted much attention in the treatment of bone metabolism-related diseases. MicroRNAs (miRNAs), as an epigenetic factor, are thought to play an important regulatory role in the process of osteogenic differentiation of MSCs. In recent years, increasingly evidence shows that miRNAs imbalance is involved in the regulation of osteoporosis and fracture. In this review, miRNAs involved in osteogenic differentiation and their mechanisms for regulating the expression of target genes are reviewed. In addition, we also discuss the potential clinical applications and possible directions of this field in the future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2569
Author(s):  
Anis Syauqina Mohd Zaffarin ◽  
Shiow-Fern Ng ◽  
Min Hwei Ng ◽  
Haniza Hassan ◽  
Ekram Alias

Nano-hydroxyapatite (nHA) has been widely used as an orthopedic biomaterial and vehicle for drug delivery owing to its chemical and structural similarity to bone minerals. Several studies have demonstrated that nHA based biomaterials have a potential effect for bone regeneration with very minimal to no toxicity or inflammatory response. This systematic review aims to provide an appraisal of the effectiveness of nHA as a delivery system for bone regeneration and whether the conjugation of proteins, antibiotics, or other bioactive molecules to the nHA further enhances osteogenesis in vivo. Out of 282 articles obtained from the literature search, only 14 articles met the inclusion criteria for this review. These studies showed that nHA was able to induce bone regeneration in various animal models with large or critical-sized bone defects, open fracture, or methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis. The conjugations of drugs or bioactive molecules such as bone-morphogenetic protein-2 (BMP-2), vancomycin, calcitriol, dexamethasone, and cisplatin were able to enhance the osteogenic property of nHA. Thus, nHA is a promising delivery system for a variety of compounds in promoting bone regeneration in vivo.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ebrahim Rahmani-Moghadam ◽  
Tahereh Talaei-Khozani ◽  
Vahideh Zarrin ◽  
Zahra Vojdani

Abstract Background Phytochemical agents such as thymoquinone (TQ) have osteogenic property. This study aimed to investigate the synergic impact of TQ and hydroxyapatite on mesenchymal stem cell differentiation. Alginate was also used as drug vehicle. Methods HA scaffolds were fabricated by casting into polyurethane foam and sintering at 800 °C, and then, 1250 °C and impregnated by TQ containing alginate. The adipose-derived stem cells were aliquoted into 4 groups: control, osteogenic induced-, TQ and osteogenic induced- and TQ-treated cultures. Adipose derived-mesenchymal stem cells were mixed with alginate and loaded into the scaffolds Results The results showed that impregnation of HA scaffold with alginate decelerated the degradation rate and reinforced the mechanical strength. TQ loading in alginate/HA had no significant influence on physical and mechanical properties. Real-time RT-PCR showed significant elevation in collagen, osteopontin, and osteocalcin expression at early phase of differentiation. TQ also led to an increase in alkaline phosphatase activity. At long term, TQ administration had no impact on calcium deposition and proliferation rate as well as bone-marker expression. Conclusion TQ accelerates the differentiation of the stem cells into the osteoblasts, without changing the physical and mechanical properties of the scaffolds. TQ also showed a synergic influence on differentiation potential of mesenchymal stem cells.


2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Jiwen Chen ◽  
Changshun Chen ◽  
Yunjun Wu ◽  
Riwang Li ◽  
Youjie Liu ◽  
...  

2019 ◽  
Vol 30 (S19) ◽  
pp. 80-80
Author(s):  
Hajime Iijima ◽  
Makoto Shiota ◽  
Kazuhiro Kon ◽  
Sawako Kawakami ◽  
Shohei Kasugai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document