scholarly journals Side Lighting Enhances Morphophysiology by Inducing More Branching and Flowering in Chrysanthemum Grown in Controlled Environment

2021 ◽  
Vol 22 (21) ◽  
pp. 12019
Author(s):  
Jingli Yang ◽  
Byoung Ryong Jeong

Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, ‘Gaya Glory’ and ‘Pearl Egg’, were subjected to a 10 h photoperiod with a 300 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Jingli Yang ◽  
Jinnan Song ◽  
Byoung-Ryong Jeong

The significant effects of lighting on plants have been extensively investigated, but research has rarely studied the impact of different lighting directions for the strawberry plant. To understand the optimal lighting direction for better growth and development, this study investigated how strawberries respond to variations in the lighting direction to help fine-tune the growth environment for their development. We examined how the lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, physiological characteristics, and expressions of runner induction-related genes (FaSOC1 and FaTFL1) and gibberellin (GA) biosyntheses-related genes (FaGA20ox2 and FaGA20ox4). In closed-type plant factory units, the rooted cuttings of strawberry (Fragaria × ananassa Duch.) ‘Suhlyang’ were subjected to a 10-h photoperiod with a 350 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plants: top, side, and bottom. Our results demonstrated that the side lighting profoundly promoted not only morphophysiology, but also runner formation, by upregulating photosynthesis in strawberries. Side lighting can bring commercial benefits, which include reduced economic costs, easier controllability, and harmlessness to plants. This will help provide new insights for the propagation of the most commonly cultivated strawberries in South Korea.


1984 ◽  
Vol 64 (3) ◽  
pp. 773-779 ◽  
Author(s):  
E. ANN CLARK ◽  
M. D. DEVINE

The growth and development of six plant species were measured under a standardized photosynthetic photon flux density (PPFD) supplied by fluorescent, metal halide, or high-pressure sodium lamps. Overall, plant growth and seed yield were in the order of high-pressure sodium > metal halide > fluorescent. Although the units tested were unable to supply a uniform, high flux density, acceptable plant growth was achieved under the compromise arrangements used.Key words: Fluorescent, metal halide, high pressure sodium, supplementary lighting


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870 ◽  
Author(s):  
Filippos Bantis ◽  
Athanasios Koukounaras ◽  
Anastasios S. Siomos ◽  
Kalliopi Radoglou ◽  
Christodoulos Dangitsis

Watermelon is cultivated worldwide and is mainly grafted onto interspecific squash rootstocks. Light-emitting diodes (LEDs) can be implemented as light sources during indoor production of both species and their spectral quality is of great importance. The objective of the present study was to determine the optimal emission of LEDs with wide wavelength for the production of watermelon and interspecific squash seedlings in a growth chamber. Conditions were set at 22/20 °C temperature (day/night), 16 h photoperiod, and 85 ± 5 μmol m−2 s−1 photosynthetic photon flux density. Illumination was provided by fluorescent (FL, T0) lamps or four LEDs (T1, T2, T3, and T4) emitting varying wide spectra. Watermelon seedlings had greater shoot length, stem diameter, cotyledon area, shoot dry weight-to-length (DW/L) ratio, and Dickson’s quality index (DQI) under T1 and T3, while leaf area and shoot dry weight (DW) had higher values under T1. Interspecific squash seedlings had greater stem diameter, and shoot and root DW under T1 and T3, while leaf and cotyledon areas were favored under T1. In both species, T0 showed inferior development. It could be concluded that a light source with high red emission, relatively low blue emission, and a red:far-red ratio of about 3 units seems ideal for the production of high-quality watermelon (scion) and interspecific squash (rootstock) seedlings.


2008 ◽  
Vol 3 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Anželika Kurilčik ◽  
Renata Miklušytė-Čanova ◽  
Stasė Dapkūnienė ◽  
Silva Žilinskaitė ◽  
Genadij Kurilčik ◽  
...  

AbstractEffects of illumination spectrum on the morphogenesis of chrysanthemum plantlets (Chrysanthemum morifolium Ramat. ‘Ellen’) grown in vitro were studied using an illumination system consisting of four groups of light-emitting diodes (LEDs) in the following spectral regions: blue (450nm), red (640nm), red (660nm), and far-red (735nm). Taking into account all differences in shoot height, root length, and fresh and dry weight (FW and DW, respectively), observed while changing the total photon flux density (PFD), the optimal total PFD for growth of chrysanthemum plantlets in vitro was estimated. For 16 h photoperiod and typical fractions of the spectral components (14%, 50%, 28%, and 8%, respectively), the optimal total PFD was found to be 40 µmol m−2 s−1. Our study shows that the blue component in the illumination spectrum inhibits the plantlet extension and formation of roots and simultaneously increases the DW to FW ratio and content of photosynthetic pigments. We demonstrate photomorphogenetic effects in the blue region and its interaction with the fractional PFD of the far-red spectral component. Under constant fractional PFD of the blue component, the root number, length of roots and stems, and fresh weight of the plantlets have a correlated nonmonotonous dependence on the fractional PFD of the far-red component.


2017 ◽  
Vol 40 (1) ◽  
pp. 32-38
Author(s):  
Phan Xuan Binh Minh ◽  
Bui Thi Thanh Phuong ◽  
Pham Huong Son ◽  
Tran Minh Hoi ◽  
Nguyen Thi Phuong Lan ◽  
...  

A. annamensis and A. roxburghii belong to Orchidaceae family that has medicinal and ornamental plant value. They are in extinct endangered plants in wild due to the over- collected and loss of the suitable habitats. Using the LED lighting source for culture these species in in vitro condition to optimize the culture conditions, reduction of the production cost, especially electric bill for air-corditionning, lighting. In recent years, the trial applied LED which has the feature of energy saving, small size and a longer operating life, for plant production has started. In this study, LED illumination sources are in four different wavelengths of λ= 430- 470 nm; λ= 470-510 nm; λ= 510-560 nm; λ= 560-600 nm and white fluorescent lamp as control with light intensity photosynthetic photon flux density (PPFD) of 40 µmol/m2/s photon used to study their effects on the growth and development of A. annamensis and A. roxburghii species. After 8 weeks of implementing, the results showed that the LEDs of λ= 470-510 nm were suitable for the growth and development for A. roxburghii shoots while for A. annamensis, λ = 430- 470 nm were most suitable for budding and λ= 470-510 nm for shoot growth. Citation: Phan Xuan Binh Minh, Bui Thi Thanh Phuong, Pham Huong Son, Tran Minh Hoi, Nguyen Thi Phuong Lan, Vu Thi Thao, 2018. The effects of linght emitting diode lighting on growth and development of A. annanesis and A. roxburghii in vitro cultured shoots. Tap chi Sinh hoc, 40(1): x-xx. DOI: 10.15625/0866-7160/v40n1.10636. *Corresponding author: [email protected] Received 23 August 2017, accepted 2 December 2017


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Dave Llewellyn ◽  
Katherine Schiestel ◽  
Youbin Zheng

A greenhouse study was undertaken to investigate whether light-emitting diode (LED) technology can be used to replace high-pressure sodium (HPS) lighting for cut gerbera production during Canada’s traditional supplemental lighting (SL) season (November to March). The study was carried out at the University of Guelph’s research greenhouse, using concurrent replications of SL treatments within the same growing environment. LED (85% red, 15% blue) and HPS treatment plots were set up to provide equal amounts of supplemental photosynthetically active radiation (PAR) at bench level. This setup was used to assess the production of three cultivars of cut gerbera (Gerbera jamesonii H. Bolus ex Hook.f): Acapulco, Heatwave, and Terra Saffier. There were no treatment differences in SL intensity, with average SL photosynthetic photon flux density (PPFD) and daily light integral (DLI) of 55.9 µmol·m−2·s−1 and 2.3 mol·m−2·d−1, respectively. Flowers harvested from the LED treatment had a 1.9% larger flower diameter in ‘Acapulco’; 4.2% shorter and 3.8% longer stems in ‘Heatwave’ and ‘Terra Saffier’, respectively; and 7.7% and 8.6% higher fresh weights for ‘Acapulco’ and ‘Terra Saffier’, respectively, compared with flowers harvested from the HPS treatment. There were no differences in accumulated total or marketable flower harvests for any of the cultivars. The vase life of ‘Acapulco’ flowers grown under the LED treatment was 2.7 d longer than those grown under the HPS treatment, but there were no SL treatment effects on water uptake for any of the cultivars during the vase life trials. There were no SL treatment effects on specific leaf area for any of the cultivars. There were only minimal treatment differences in leaf, soil, and air temperatures. Cut gerbera crops grown with under LED SL had equivalent or better production and crop quality metrics compared with crops grown under HPS SL.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2483
Author(s):  
Alain Fortineau ◽  
Didier Combes ◽  
Céline Richard-Molard ◽  
Ela Frak ◽  
Alexandra Jullien

Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.


HortScience ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 661-666
Author(s):  
Kellie J. Walters ◽  
Allison A. Hurt ◽  
Roberto G. Lopez

Foliage annuals are primarily grown for the aesthetic appeal of their brightly colored, variegated, or patterned leaves rather than for their flowers. Once foliage annuals become reproductive, vegetative growth of many species diminishes or completely ceases and plants can become unappealing. Therefore, the objectives of this study were to quantify how growth and development during production and stock plant cutting yield of bloodleaf (Iresine herbstii), Joseph’s coat (Alternanthera sp.) ‘Brazilian Red Hots’ and ‘Red Threads’, Persian shield (Strobilanthes dyerianus), and variegated potato vine (Solanum jasminoides) are influenced by photoperiod and night interruption (NI) lighting with or without far-red (FR) radiation. Photoperiods consisted of a 9-hour short day (SD) or a 9-hour SD extended to 10, 12, 13, 14, or 16 hours with red (R):white (W):FR light-emitting diode (LED) lamps (R:FR = 0.8) providing a total photon flux density (TPFD) of ≈2 µmol·m−2·s–1 of radiation. In addition, two treatments consisted of a 9-hour SD with a 4-hour NI from lamps containing the same R:W:FR or R:W LEDs (R:FR = 37.4). Bloodleaf plant and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ developed inflorescences or flowers under photoperiods ≤12 to 13 hours and were classified as obligate SD plants. Under LEDs providing R:W:FR radiation, stem elongation of reproductive bloodleaf and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ increased as photoperiod increased from 9 to 12 hours. In addition, stem elongation of bloodleaf, Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’, and Persian shield and growth index (GI = {plant height + [(diameter 1 + diameter 2)/2]}/2) of bloodleaf and Persian shield was significantly greater under NI with FR radiation than without FR radiation. Fewer or no cuttings were harvested from Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ under photoperiods ≤12 or ≤13 hours, respectively. To prevent unwanted flowering of bloodleaf plant and Joseph’s coat, a photoperiod ≥14 hours or 4-hour NI must be maintained with LEDs providing either R:W or R:W:FR radiation, however; stem elongation is significantly reduced under R:W LEDs.


Sign in / Sign up

Export Citation Format

Share Document