kinematic transformations
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2022 ◽  
Vol 2149 (1) ◽  
pp. 012015
Author(s):  
M Katona ◽  
K Trampert ◽  
C Schwanengel ◽  
U Krüger ◽  
C Neumann

Abstract Imaging Luminance Measuring Device (ILMD) based luminous intensity distribution measurement systems are an established method for measuring the luminous intensity distribution (LID) of light sources in the far field. The advantage of this system is the high-resolution acquisition of a large angular range with one image. For the uncertainty budget, the mathematical description of the system can be divided into photometric and geometric contributions. In the following, we will present a Monte-Carlo approach to analyse the geometric contributions which are the uncertainty of measurement direction and measurement distance. Therefore, we set up a geometric system description based on kinematic transformations that describes the connection between detector and light source position. To consider all relevant input quantities we simulate the adjustment and measurement process. Finally, an analysis of the geometric input parameters is shown.


2019 ◽  
Vol 17 (01) ◽  
pp. 1950037
Author(s):  
Philip Long ◽  
Taşkın Padır

Robot performance measures are important tools for quantifying the ability to carry out manipulation tasks. Generally, these measures examine the system’s kinematic transformations from configuration to task space. This means that environmental constraints are neglected in spite of the significant effects they may have on the robot’s admissible motions. In this paper, we propose a new measure called the constrained manipulability polytope (CMP) that considers the system’s kinematic structure, including closed chains or composite sub-mechanisms, joint limits and the presence of obstacles. For an illustrative planar case, we demonstrate how the CMP can evaluate a robot’s performance in a cluttered scene and how this evaluation can be extrapolated to obtain a workspace visualization. Additionally, we show the advantages and limitations of the CMP compared to the state of the art. Furthermore, the method is demonstrated both in simulation and experimentally for NASA’s Valkyrie robot. We show how the CMP provides a measure for single-arm and dual-arm manipulation tasks, analyze the workspace and be used to optimize the robot’s posture.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1041-1063
Author(s):  
Abhijit Mahapatra ◽  
Shibendu Shekhar Roy ◽  
Dilip Kumar Pratihar

SUMMARYAn analytical model with coupled dynamics for a realistic six-legged robotic system locomoting on various terrains has been developed, and its effectiveness has been proven through computer simulations and validated using virtual prototyping tools and real experiment. The approach is new and has not been attempted before. This study investigated the optimal feet-forces’ distributions under body force and foot–ground interaction considering compliant contact and friction force models for the feet undergoing slip. The kinematic model with 114 implicit constraints in 3D Cartesian space has been transformed in terms of generalized coordinates with a reduced explicit set of 24 constrained equations using kinematic transformations. The nonlinear constrained inverse dynamics model of the system has been formulated as a coupled dynamical problem using Newton–Euler method with realistic environmental conditions (compliant foot–ground contact, impact, and friction) and computed using optimization techniques due to its indeterminate nature. One case study has been carried out to validate the analytical data with the simulated ones executed in MSC.ADAMS® (Automated Dynamic Analysis of Mechanical Systems), while the other case study has been conducted to validate the analytical and simulated data with the experimental ones. In both these cases, results are found to be in close agreement, which proves the efficacy of the model.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Olha Sushchenko ◽  
Andriy Goncharenko

The paper deals with the structural synthesis of robust system for stabilization of observation equipment operated on unmanned aerial vehicles. The model of the triaxial stabilization system taking into consideration necessary kinematic transformations is developed. The matrix weighting transfer functions ensuring design of the system with the desired amplitude-frequency characteristics of the system are chosen. The features of the robust structural synthesis for the researched system are considered. The structure and parameters of the robust controller, based on robust structural synthesis including the methods of the mixed sensitivity and loop-shaping, are obtained. The results of the synthesized system simulation are represented. The obtained results allow implementing stabilization of observation equipment in difficult conditions of real operation. This improves the quality of photography, mapping, survey, and so forth and gives advantages of accuracy for images representations of the territory flown. The obtained results are significant for stabilization of equipment operated at a moving base.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
S. G. M. Hossain ◽  
Carl A. Nelson ◽  
Khoa D. Chu ◽  
Prithviraj Dasgupta

Modular self-reconfigurable robots (MSRs) are systems which rely on modularity for maneuvering over unstructured terrains, while having the ability to complete multiple assigned functions in a distributed way. An MSR should be equipped with robust and efficient docking interfaces to ensure enhanced autonomy and self-reconfiguration ability. Genderless docking is a necessary criterion to maintain homogeneity of the robot modules. This also enables self-healing of a modular robot system in the case of a failed module. The mechanism needs to be compact and lightweight and at the same time have sufficient strength to transfer loads from other connected modules. This research focuses on the design of a modular robot with four degrees of freedom (4DOF) per module and with the goal of achieving higher workspace flexibility and self-healing capability. To explain the working principle of the robot, forward kinematic transformations were derived and workspace and singularity analysis were performed. In addition, to address the issues of interfacing, a rotary plate genderless single-sided docking mechanism—RoGenSiD—was developed. The design methodology included considerations for minimal space and weight as well as for fault tolerance. As a result, this docking mechanism is applicable for multifaceted docking in lattice-type, chain-type, or hybrid-type MSR systems. Several locomotion gaits were proposed and bench-top testing validated the system performance in terms of self-healing capability and generation of locomotion gaits.


2013 ◽  
Vol 111 (9) ◽  
Author(s):  
U. Alvarez-Rodriguez ◽  
J. Casanova ◽  
L. Lamata ◽  
E. Solano

Author(s):  
Khoa D. Chu ◽  
S. G. M. Hossain ◽  
Carl A. Nelson

Throughout the modern age, exploration of the unknown has been an attractive pursuit to seekers of knowledge. One of the primary frontiers for exploration today involves planetary and lunar environments. Exploration in these environments can involve many different types of tasks in a broad range of environmental conditions. Modular Self-Reconfigurable Robots (MSRs) would be beneficial for completing these tasks in unstructured environments, while having the ability to complete multiple assigned functions. Since payload is a critical concern, a lighter and more dexterous MSR is preferable. This research focuses on the design of a robot that has these qualities. A chain-type modular robot with four degrees of freedom per module has been designed with the goal of reducing weight and size while increasing range of motion. Forward kinematic transformations were derived to analyze the available workspace provided by the MSR. Radio communication and proximity sensing ability were provided in the individual MSR modules to locate each other. The modules are designed to maneuver independently using their individual navigation capability as well as connect to each other by means of a docking mechanism. Locomotion gaits for such multi-module robot chains are also described.


2009 ◽  
Vol 38 (9) ◽  
pp. 1093-1119 ◽  
Author(s):  
Oya Mercan ◽  
James M. Ricles ◽  
Richard Sause ◽  
Thomas Marullo

Sign in / Sign up

Export Citation Format

Share Document