scholarly journals Effect of soy protein-based flocculant on flocculation and filtration of diatomite and kaolin suspensions

2020 ◽  
Vol 82 (9) ◽  
pp. 1868-1876
Author(s):  
Hideo Maruyama ◽  
Hideshi Seki

Abstract The effect of ethylated soy protein-based bioflocculant (EtSP) as a filter aid reagent was investigated. The efficiency of EtSP as a filter aid was evaluated in terms of the specific cake resistance, α, and was compared with chitosan and polyaluminum chloride (PAC). Diatomite and kaolin were used as model particles. Total filtration resistance, R, decreased with increasing flocculant dosage (wt.%, flocculant/particle) and was almost constant in the range of 1 wt.% or more for both particles. The α value was significantly decreased from 1.01 × 1011 to 9.01 × 1010 m/kg for diatomite and from 5.11 × 1010 to 5.20 × 109 m/kg for kaolin by the addition of EtSP in the case of 1.0 wt.%. The α value for cakes formed by EtSP was much smaller than that formed by chitosan and PAC. In the case of diatomite, in the dose range of 0.5–1.0 wt.%, the α value for cakes formed by EtSP and chitosan was almost the same. However, at the excess dose of 2.0 wt.% over, the α value formed by chitosan abruptly increased. In the case of kaolin, in the dose range of 1.0–2.0 wt.%, the α values of chitosan and PAC were mostly the same, however, these values were larger by ca. nine times than that of EtSP.

Membranes ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 33 ◽  
Author(s):  
Kitae Park ◽  
Pooreum Kim ◽  
Hyoung Gun Kim ◽  
JiHoon Kim

In this paper, we investigated the membrane fouling mechanism according to the coagulant dosage in algal rich water using a ceramic membrane. The algae that were used in this experiment were Microcystis sp. of cyanobacteria, and the fouling mechanism was analyzed through irrigation and filtration resistance through a constant flow operation. The experimental results showed that the filtration resistance decreased as the coagulant dosage increased, but the irreversibility at above optimum coagulant dosage increased. Additionally, as the coagulant dosage increased, the resistance value due to cake and adsorption contamination decreased, and membrane fouling by adsorption was dominant in comparison with cake fouling and adsorption fouling. The specific cake resistance was decreased as the coagulant dosage increased. The characteristics of the cake layer according to the coagulant dosage were found to loosely form the cake layer by increasing micro-size algae as the coagulant dosage increased. The results of this experiment confirmed the membrane fouling mechanism according to coagulant dosage when the ceramic membrane filtered algal rich water.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
Szabolcs Gyula Szerencsés ◽  
Sándor Beszédes ◽  
Zsuzsanna László ◽  
Gábor Veréb ◽  
Balázs Szegedi ◽  
...  

Nowadays, several environmental challenges are present to cope with. One with outstanding importance is the protection of our water supplies, therefore examination of wastewater treatment technology is a priority, especially in the European Union. In this work, the effect of membrane module vibration amplitude on the efficiency of ultrafiltration (UF) was investigated in a vibratory shear enhanced membrane filtration system. Based on the results of model dairy effluent UF and statistical analysis, the maximum vibration level available resulted in the most efficient filtration process, due to the most significant reduction of membrane fouling. From our results it was observed that the permeate fluxes more than doubled, specific energy demand was roughly halved, with almost identical retentions for organic matter, and total filtration resistance was reduced to less than half. Results also showed that setting the optimal operating parameters, an advantageous, efficiency focused, and sustainable wastewater treatment technology can be established.


2013 ◽  
Vol 67 (9) ◽  
pp. 1994-1999 ◽  
Author(s):  
Katsuki Kimura ◽  
Naoko Ogawa ◽  
Yoshimasa Watanabe

Decline in the permeability in nanofiltration (NF)/reverse osmosis (RO) membranes that filtered effluents from a membrane bioreactor (MBR) treating municipal wastewater was investigated in this study. Four different 2-inch spiral-wound NF/RO membrane elements were continuously operated for 40 days. The results showed that the amount of deposits on the membrane surface did not affect the degree of permeability decline. Laboratory-scale filtration tests with coupons obtained from the fouled membranes also revealed that the contribution of the gel/cake layer to total filtration resistance was minor. Rather, constituents that were strongly bound to the membranes were mainly responsible for permeability decline. Chemical cleaning of the fouled membranes carried out after removal of the cake showed that silica played an important role in the decline in permeability. A considerable amount of organic matter which was mainly composed of carbohydrates and proteins was also desorbed from the fouled membranes.


2018 ◽  
Vol 19 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Gábor Veréb ◽  
Viktória Kálmán ◽  
Tamás Gyulavári ◽  
Szabolcs Kertész ◽  
Sándor Beszédes ◽  
...  

Abstract For the effective purification of emulsified oil contaminated waters advanced treatment methods have to be applied, such as membrane filtration, which is able to eliminate macro-, and even nanoscale oil droplets, however, membrane fouling is still a major problem, which prevents economic utilization. Therefore, fouling mitigation is one of the most important aspects in the field of membrane separation developments. In the present study, solely TiO2 and TiO2/carbon nanotubes (CNT) composite modified PVDF membranes were prepared and used to purify oil-in-water emulsions. Achievable fluxes, reversible and irreversible filtration resistances, fouling models, filtration efficiencies and photocatalytic activities were compared in case of different nanomaterial covered and unmodified PVDF membranes. Applying either solely TiO2 or solely CNT coating resulted in the significant reduction of total filtration resistance in both cases, but the combination of the two components (TiO2 with 1 wt% CNT) resulted in by far the highest flux and lowest resistance, meanwhile, the enhanced photocatalytic efficiency of the composite was also achieved. To the best of our knowledge, this study demonstrates the beneficial effects of the combination of TiO2 and CNT nanomaterials for the first time in the field of membrane separation of oil-in-water emulsions.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


2005 ◽  
Vol 38 (18) ◽  
pp. 6
Author(s):  
BRUCE JANCIN
Keyword(s):  

1992 ◽  
Vol 68 (01) ◽  
pp. 069-073 ◽  
Author(s):  
J J J van Giezen ◽  
J W C M Jansen

SummaryDexamethasone decreases the fibrinolytic activity in cultured medium of several cell types by an induction of PAI-1 synthesis. As a result of this enhanced PAI-1 synthesis a prothrombotic state is expected in patients treated with dexamethasone. However, such a prothrombotic state is not reported as a major adverse effect. We have studied the effects of dexamethasone (dose range: 0.1–3.0 mg/kg) on the fibrinolytic system of rats after a 5 day pretreatment period. It appeared that dexamethasone dose dependently decreased the fibrinolytic activity (a dose of 1 mg/kg showed a reduction of about 40%). This reduced fibrinolytic activity could be functionally translated into an increased thrombus size as measured with a venous thrombosis model: thrombus size was increased by 50% with 1 mg/kg dexamethasone. No effects could be measured on the coagulation system, but it appeared that ex-vivo measured platelet aggregation was dose dependently inhibited by dexamethasone treatment. This effect resulted in-vivo in prolonged obstruction times as measured with a modified aorta-loop model. These results indicate that the expected prothrombotic state due to a diminished fibrinolytic activity caused by dexamethasone is counterbalanced by an inhibition of platelet aggregation.


1985 ◽  
Vol 54 (03) ◽  
pp. 630-634 ◽  
Author(s):  
J Dawes ◽  
C V Prowse ◽  
D D Pepper

SummaryThe competitive binding assay described will specifically and accurately measure concentrations of administered heparin in biological fluids with a sensitivity of 60 ng ml-1. Neither endogenous glycosaminoglycans, nor plasma proteins such as ATIII and PF4 interfere in the assay. Semi-synthetic highly sulphated heparinoids and LMW heparin can also be measured. Using this assay heparin clearance followed simple first-order kinetics over the dose range 100-5,000 units, but the half-life was strongly dose-dependent. There was good correlation with heparin activity measurements by APTT and anti-Xa clotting assays. Plasma concentrations were measurable for at least 5 h following subcutaneous injection of 10,000 units of heparin. Excretion in the urine could be followed after all but the lowest intravenous dose. This assay, used in conjunction with measurements of heparin anticoagulant activity, will be valuable in the elucidation of mechanisms of action of heparin and the heparinoids, and in the assessment and management of problems related to heparin therapy.


Sign in / Sign up

Export Citation Format

Share Document