microwave absorbing materials
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 6)

Author(s):  
Heryanto Heryanto ◽  
Dahlang Tahir

Abstract Electronic equipment demand is strongly correlated to the electromagnetic wave interference (EMI), which causes severe effects on human health. Microwave absorbing materials (MAMs) are one method to protect human health from EMI. Cobalt nanoparticles show high performance as MAMs. Here, we have synthesized CoFeO3 by simple mechanical alloying for increased multiple reflections, interfacial polarization, magnetic domain loss, electron spin loss, internal resonance, hoping electron, conductive loss, and multiple scattering for improved absorption of EMI waves. We determined the electronic properties from the Quantum Espresso (QE) and corresponding results are discussed. The metallic character comes from the d-state of transition metal atoms Fe (II) and Co which are sufficiently large in magnitude in the Fermi level of band structure and density of state (DOS) distribution. Crystallite size in the range of 13.6 to 18.7 nm with surface morphology shows irregular shapes of the particles. For CoFeO3 as MAMs, we found that the reflection loss (RL) is -55 dB (lower than the previous reported -43.2 dB) at 10-11 GHz for a thickness of 8 mm, indicating that this study shows high potential of CoFeO3 as an alternative composite for MAMs applications.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 982
Author(s):  
Wenyan Gu ◽  
Rong Zhan ◽  
Rui Li ◽  
Jiaxin Liu ◽  
Jiaqiao Zhang

In the field of microwave-absorbing materials, functional powder has always been the focus of research. In order to fabricate lightweight and flexible garment materials with microwave-absorbing function, the current work was carried out. Firstly, the general properties of polyurethane (PU) matrix composites reinforced with various microwave-absorbing powders were studied, and the carbon nanotubes (CNTs)/Fe3O4/PU film was proven to have the best general properties. Secondly, the needle-punched polyester (PET) nonwoven fabrics in 1 mm-thickness were impregnated into PU resin with the same composition of raw material as Fe3O4/CNTs/PU film, thereby the microwave-absorbing nonwovens with gradient structure were prepared. Moreover, the absorbing properties of the CNTs/Fe3O4/PU/PET gradient composites were tested and analyzed. Finally, the relationship between the mass ratio of CNTs and Fe3O4, and the microwave-absorbing properties was studied. The results show that the mass ratio of CNTs/Fe3O4 has a significant effect on the microwave-absorbing property of CNTs/Fe3O4/PU/PET. When the mass ratio of CNTs/Fe3O4 is 1:1, the prepared CNTs/Fe3O4/PU/PET gradient composite can achieve effective reflection loss in the range of more than 2 GHz in Ku-band (12–18 GHz), and the minimum reflection loss reaches −17.19 dB.


2021 ◽  
Vol 5 (7) ◽  
pp. 173
Author(s):  
Bluma Guenther Soares ◽  
Guilherme M. O. Barra ◽  
Tamara Indrusiak

The development of sophisticated telecommunication equipment and other electro-electronic devices resulted in a kind of electromagnetic pollution that affects the performance of other equipment as well as the health of human beings. Intrinsically conducting polymers (ICP), mainly polyaniline and polypyrrole, have been considered as promising candidates for applications in efficient electromagnetic interference shielding (EMI) due to their ease of preparation, light weight, good conductivity and corrosion resistance. One of the important advantages of these materials is the capability to interact with the EM radiation through both absorption and reflection mechanisms thus enlarging the field of application. In this context, this review article describes a recent overview of the existing methods to produce intrinsically conducting polymers and their blends for electromagnetic shielding application. Additionally, it highlights the relationship between preparation methods reported in the literature with the structure and properties, such as electrical conductivity, electromagnetic shielding effectiveness (EMI SE), complex permittivity and permeability of these materials. Furthermore, a brief theory related to the electromagnetic mechanism and techniques for measuring the microwave absorbing properties are also discussed.


2021 ◽  
Vol 71 (03) ◽  
pp. 351
Author(s):  
Dharmendra Singh

The 4th Prof. Vijaya Agarwala Memorial National Symposium on Microwave Absorbing Materials (VAMMAM-2020)” was held during 23 - 24th, August 2020 at Indian Institute of Technology Roorkee in association with Centre of Nanotechnology and Common Research Technology Development Hub (CRTDH) for New Materials/Stealth Applications and Department of Applied Mechanics Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.


2021 ◽  
Vol 71 (03) ◽  
pp. 365-371
Author(s):  
Anshika Verma ◽  
Naina Narang ◽  
Dharmendra Singh ◽  
Ghanshyam Das Varma

Microwave absorbing materials (MAMs) are widely researched due to their use in many practical applications including both civil and defense sectors. Irrespective of the humongous efforts of various researchers, the development of a wide bandwidth, thin coating thickness, and low-cost microwave absorber is still a challenging task. The existing materials have not been able to meet all the specifications together at once and require a trade-off in the performance parameters. In this paper, we have empirically corroborated a cost-effective technique using E-waste material for synthesising composite MAM. It is herein shown that the addition of different wt% of copper, graphite, and titanium dioxide in the E-waste successfully resulted in enhanced absorption due to altered electrical properties of the E-waste suitable for microwave absorption. The multilayering technique with the help of a genetic algorithm has also been used to broaden the bandwidth. As a result, a three-layer MAM with the total coating thickness of 3.2 mm has been synthesised showing the wideband absorption bandwidth of 8.47 GHz in the frequency range from 6.92 to 15.39 GHz. The results suggested that microwave absorption of E-waste can be drastically improved by appropriately tailoring electrical parameters such as permittivity and permeability.


Sign in / Sign up

Export Citation Format

Share Document