Pleistocene climate oscillations and habitat connectivity contributed to avian beta‐diversity in the megadiverse Colombian Paramo ecosystems

2021 ◽  
Author(s):  
Edna V. Calpa‐Anaguano ◽  
Catherine H. Graham ◽  
Fernando R. Silva
2019 ◽  
Author(s):  
Suzette G.A. Flantua ◽  
Aaron O’Dea ◽  
Renske E. Onstein ◽  
Henry Hooghiemstra

ABSTRACT AND KEYWORDSAimTo quantify the effect of Pleistocene climate fluctuations on habitat connectivity across páramos in the Neotropics.LocationThe Northern AndesMethodsThe unique páramos habitat underwent dynamic shifts in elevation in response to changing climate conditions during the Pleistocene. The lower boundary of the páramos is defined by the upper forest line, which is known to be highly responsive to temperature. Here we reconstruct the extent and connectivity of páramos over the last 1 million years (Myr) by reconstructing the UFL from the long fossil pollen record of Funza09, Colombia, and applying it to spatial mapping on modern topographies across the Northern Andes for 752 time slices. Data provide an estimate of how often and for how long different elevations were occupied by páramos and estimates their connectivity to provide insights into the role of topography in biogeographic patterns of páramos.ResultsOur findings show that connectivity amongst páramos of the Northern Andes was highly dynamic, both within and across mountain ranges. Connectivity amongst páramos peaked during extreme glacial periods but intermediate cool stadials and mild interstadials dominated the climate system. These variable degrees of connectivity through time result in what we term the ‘flickering connectivity system’. We provide a visualization (video) to showcase this phenomenon. Patterns of connectivity in the Northern Andes contradict patterns observed in other mountain ranges of differing topographies.Main conclusionsPleistocene climate change was the driver of significant elevational and spatial shifts in páramos causing dynamic changes in habitat connectivity across and within all mountain ranges. Some generalities emerge, including the fact that connectivity was greatest during the most ephemeral of times. However, the timing, duration and degree of connectivity varied substantially among mountain ranges depending on their topographic configuration. The flickering connectivity system of the páramos uncovers the dynamic settings in which evolutionary radiations shaped the most diverse alpine biome on Earth.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emil Karpinski ◽  
Dirk Hackenberger ◽  
Grant Zazula ◽  
Chris Widga ◽  
Ana T. Duggan ◽  
...  

Author(s):  
E Martins Camara ◽  
Tubino Andrade Andrade-Tub ◽  
T Pontes Franco ◽  
LN dos Santos ◽  
AFGN dos Santos ◽  
...  

2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


2010 ◽  
Vol 18 (4) ◽  
pp. 323 ◽  
Author(s):  
Chen Shengbin ◽  
Ouyang Zhiyun ◽  
Xu Weihua ◽  
Xiao Yi

2016 ◽  
Author(s):  
Nyle Major Weldon ◽  
◽  
Ray J. Weldon ◽  
Win N.F. McLaughlin ◽  
Samantha S.B. Hopkins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document