green capping agent
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hojat Samarehfekri ◽  
Hamid Reza Rahimi ◽  
Mehdi Ranjbar

AbstractThis work aimed to prepare solvent-free or green Bi2O2CO3 for quantum dot nanostructures (QDNSs) based on cellulose as a stabilizer and green capping agent to sorafenib delivery for liver targeting. Because the walnut tree is one of the most abundant trees in Iran, it was tried to synthesize Bi2O2CO3 QDNSs using a walnut skin extract. The saturation magnetization for Bi2O2CO3 QDNSs was calculated to be 68.1. Also, the size of products was measured at around 60–80 nm with the Debye–Scherrer equation. Moreover, the morphology, functional groups, and crystallography of the Bi2O2CO3 nanoparticles were investigated using atomic force microscopy, scanning electron microscopy, vibrating-sample magnetometer, and Uv–vis spectroscopy. The results demonstrated that Bi2O2CO3 QDNSs have opto-magnetic properties and they can be suggested as the candidate materials for the sorafenib delivery on the liver tissue. The optical band gap estimated for Bi2O2CO3 QDNSs was found to be red-shift from 3.22 eV. This study suggests the preparation of the Bi2O2CO3 QDNSs based on cellulose as new opto-magnetic materials at different temperatures of 180 °C, 200 °C, 220 °C, and 240 °C for sorafenib delivery as a type of biological therapy drug.


2018 ◽  
Vol 17 (04) ◽  
pp. 1760032
Author(s):  
Sujata Deb ◽  
P. K. Kalita ◽  
P. Datta

ZnS nanostructures are synthesized by a wet chemical route using starch as green capping agent under nitrogen environment. The as-prepared nanostructures are characterized structurally, optically and electrically. X-ray diffraction (XRD) spectra confirm that the zinc sulfide (ZnS) nanoparticles have cubic phase (zinc blende). UV–Vis spectrum of the sample clearly shows that the absorption peak exhibits blue shift compared to their bulk counterpart, which confirms the quantum confinement effect of the nanostructures. Its photoluminescence (PL) spectrum shows near band gap emission at 392[Formula: see text]nm and extrinsic emission at 467[Formula: see text]nm. The particle sizes calculated from XRD and UV studies are in fair agreement with high resolution transmission electron microscopy (HRTEM) results. Starch is found to be a noble capping agent in bringing quantum confinement. The synthesis under nitrogen environment has been observed to produce quality products by reducing the oxide traces. Moreover, the I–V characteristics under dark and illumination show that ZnS can be more suitable as photodetector.


2017 ◽  
Vol 225 ◽  
pp. 290-295 ◽  
Author(s):  
Hamideh Haghjoo ◽  
Fatemeh Sadat Sangsefidi ◽  
Seyed Ali Hashemizadeh ◽  
Masoud Salavati-Niasari

Sign in / Sign up

Export Citation Format

Share Document