scholarly journals A facile one-step preparation of Ca10(PO4)6(OH)2/Li-BioMOFs resin nanocomposites with Glycyrrhiza glabra (licorice) root juice as green capping agent and mechanical properties study

2020 ◽  
Vol 48 (1) ◽  
pp. 1331-1339
Author(s):  
Fahimeh Asadi ◽  
Hamid Forootanfar ◽  
Mehdi Ranjbar
1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


2013 ◽  
Vol 321-324 ◽  
pp. 209-212
Author(s):  
Chun Yan Xia

nfluences on properties of the concrete highway pavement were analyzed in this paper, and the optimal formulation materials were gotten to use in the repair of used-broken cement blocks in the experiment. Polyurethane concrete material was prepared, combing the ordinary concrete technology with one-step method of the synthesis of polyurethane hard bubble, and then its mechanical properties of the relevant parameters were measured to determine the optimal preparation program. The results show that the polyurethane concrete also has sufficiently good mechanical properties while it has the characteristic of fast patching.


Author(s):  
Chaochao Ye ◽  
Yongsheng Liu ◽  
Changchun Wang ◽  
Wenqing Wei ◽  
Hongsheng Jia ◽  
...  

2021 ◽  
Vol 36 (2) ◽  
pp. 219-227
Author(s):  
P. Saiprasit ◽  
A. K. Schlarb

Abstract Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)-based nanocomposites filled with 1 vol.% silicon dioxide nanoparticles (nano-SiO2) were prepared using a co-rotating twin-screw extruder and injection molding. The nanocomposites with various blending sequences were investigated using PLA-based and PBAT-based nanocomposite masterbatches. Morphology of the PLA/PBAT/SiO2 nanocomposites was examined using a scanning electron microscope (SEM) and a focused ion beam (FIB) SEM. It is found that the nano-SiO2 locates in the original polymer phase, in which it is firstly incorporated in the masterbatch process, as well as at the interface between the two polymers. However, as the residence time in the extrusion process increases, the nanoparticles migrate from the original phase to the interface, governed by the thermodynamic driving force. The best optimization of mechanical properties is achieved by using the PBAT-based masterbatches with a one-step process or short residence time. The processing history, therefore, has a tremendous impact on the final properties of the resulting materials.


2006 ◽  
Vol 503-504 ◽  
pp. 865-870 ◽  
Author(s):  
Yongjun Chen ◽  
Qu Dong Wang ◽  
Jianguo Peng ◽  
Chun Quan Zhai

Experiments were conducted both to evaluate the potential for grain refinement, the subsequent mechanical properties at room temperature in samples of AZ31 Mg alloy and also to investigate the relationship between one-step and two-step high ratio extrusion (HRE). The one-step HRE was undertaken using a high extrusion ratio of 70:1 at 250, 300 and 350°C. And the two-step HRE was conducted with an extrusion ratio of 7 for the first step at 250, 300 and 350°C, followed by a second-step extrusion with an extrusion ratio of 10 at 250, 300 and 350°C. The initial grain size in the AZ31 ingot was 100μm and that after one-step HRE became similar to 5μm, after two-step HRE at 250, 300 and 350°C were 2, 4, 7μm, respectively, resulting in superior mechanical properties at ambient temperature. The microstructure of two-step HRE was finer and uniformer than that of one-step HRE and the strength of one-step and two-step HRE were similar, moreover, the elongation of one-step HRE was improved markedly than that of two-step HRE. Dynamic recrystallization and adjacent grain broking during HRE is introduced to explain the effects of one-step and two-step HRE on the microstructure and mechanical properties of AZ31 Mg alloy. The current results imply that the simple HRE method might be a feasible processing method for industry applications, and the multiply steps extrusion are effective to fabricate high strength of fine grained hcp metals.


Sign in / Sign up

Export Citation Format

Share Document