Выявление магнитной анизотропии в аустенитной хромоникелевой стали после прокатки

2021 ◽  
pp. 56-62
Author(s):  
М.Б. Ригмант ◽  
Н.В. Казанцева ◽  
А.В. Кочнев ◽  
Ю.Н. Коэмец ◽  
Ю.В. Корх ◽  
...  

Investigations of texture, phase composition and magnetic anisotropy in rolled samples of austenitic steel 09Kh17N5Yu were carried out. It has been shown that the method of magnetic nondestructive testing using measuring of magnetic fields from locally magnetized areas is sensitive to anisotropy of magnetic permeability. Anisotropy of magnetic properties is related to formation of mechanical rolling texture. FCC rolling texture {110}<111> was found in all the rolled samples. Rolling texture, common for BCC structure (strain-induced martensite in low-carbon austenitic steels), developed in the samples with 30% of deformation or higher. Formation of ferromagnetic strain-induced martensite in austenitic steel 09Kh17N5Yu was confirmed by magnetic force microscopy.

Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


Small ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. 2070058
Author(s):  
Héctor Corte‐León ◽  
Volker Neu ◽  
Alessandra Manzin ◽  
Craig Barton ◽  
Yuanjun Tang ◽  
...  

1999 ◽  
Vol 577 ◽  
Author(s):  
A. Gavrin ◽  
C. Sellers ◽  
S.H. Liouw

ABSTRACTWe have used Magnetic Force Microscopy (MFM) to study the magnetic domain structures of melt-spun Nd-Fe-B ribbons. The ribbons are commercial products (Magnequench International, Inc. MQP-B and MQP-B+) with a thickness of approximately 20 microns. These materials have identical composition, Nd12.18B5.36Fe76.99Co5.46, but differ in quenching conditions. In order to study the distribution of domain sizes through the ribbon thickness, we have prepared cross-sectional samples in epoxy mounts. In order to avoid artifacts due to tip-sample interactions, we have used high coercivity CoPt coated MFM tips. Our studies show domain sizes typically ranging from 50-200 nm in diameter. This is in agreement with studies of similar materials in which domains were investigated in the plane of the ribbon. We also find that these products differ substantially in mean domain size and in the uniformity of the domain sizes as measured across the ribbon. While the B+ material shows nearly uniform domain sizes throughout the cross section, the B material shows considerably larger domains on one surface, followed by a region in which the domains are smaller than average. This structure is presumably due to the differing quench conditions. The region of coarse domains varies in thickness, disappearing in some areas, and reaching a maximum thickness of 2.75 µm in others. We also describe bulk magnetic measurements, and suggest that.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Sergey Yu. Grebenchuk ◽  
Razmik A. Hovhannisyan ◽  
Viacheslav V. Dremov ◽  
Andrey G. Shishkin ◽  
Vladimir I. Chichkov ◽  
...  

1995 ◽  
Vol 31 (6) ◽  
pp. 3349-3351 ◽  
Author(s):  
M.R.J. Gibbs ◽  
M.A. Al-Khafaji ◽  
W.M. Rainforth ◽  
H.A. Davies ◽  
K. Babcock ◽  
...  

2013 ◽  
Vol 543 ◽  
pp. 35-38 ◽  
Author(s):  
Masaaki Futamoto ◽  
Tatsuya Hagami ◽  
Shinji Ishihara ◽  
Kazuki Soneta ◽  
Mitsuru Ohtake

Effects of magnetic material, coating thickness, and tip radius on magnetic force microscope (MFM) spatial resolution have been systematically investigated. MFM tips are prepared by using an UHV sputtering system by coating magnetic materials on non-magnetic Si tips employing targets of Ni, Ni-Fe, Co, Fe, Fe-B, and Fe-Pd. MFM spatial resolutions better than 9 nm have been confirmed by employing magnetic tips coated with high magnetic moment materials with optimized thicknesses.


2018 ◽  
Vol 765 ◽  
pp. 3-7
Author(s):  
Badin Damrongsak ◽  
Samutchar Coomkaew ◽  
Karnt Saengkaew ◽  
Ittipon Cheowanish ◽  
Pongsakorn Jantaratana

In this work, magnetic force microscopy (MFM) tips coated with a nickel thin-film were prepared and characterized for applications in the measurement of the magnetic write field. Nickel films with various thicknesses in a range of 20 – 80 nm were deposited on silicon substrates and silicon atomic force microscopy (AFM) tips by electron beam evaporation. Film surface morphologies and magnetic properties of the coated nickel films were investigated by using AFM and vibrating sample magnetometry (VSM). The rms roughness increased with the film thickness and was in a range between 0.1 and 0.3 nm. VSM results revealed that the mean coercive field of the nickel films was 20 Oe and there was an increase in the coercivity as the film thickness increased. In addition, the prepared MFM tips were evaluated for the tip response to the dc and ac magnetic field generated from perpendicular write heads. It was found that the MFM tip had the best response to the write field when coated with 60 nm thick nickel film. The coating thickness over 60 nm was inapplicable due to the cantilever bending caused by the film stress.


Sign in / Sign up

Export Citation Format

Share Document