Faculty Opinions recommendation of Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species.

Author(s):  
Camilla Nesbø
Nature ◽  
2021 ◽  
Author(s):  
Zhuo Zhou ◽  
Cui-jing Zhang ◽  
Peng-fei Liu ◽  
Lin Fu ◽  
Rafael Laso-Pérez ◽  
...  

Author(s):  
Abhisek Dwivedy ◽  
Bhavya Jha ◽  
Khundrakpam Herojit Singh ◽  
Mohammed Ahmad ◽  
Anam Ashraf ◽  
...  

Bacterioferritins (Bfrs) are ferritin-like molecules with a hollow spherical 24-mer complex design that are unique to bacterial and archaeal species. They play a critical role in storing iron(III) within the complex at concentrations much higher than the feasible solubility limits of iron(III), thus maintaining iron homeostasis within cells. Here, the crystal structure of bacterioferritin from Achromobacter (Ach Bfr) that crystallized serendipitously during a crystallization attempt of an unrelated mycobacterial protein is reported at 1.95 Å resolution. Notably, Fe atoms were bound to the structure along with a porphyrin ring sandwiched between the subunits of a dimer. Furthermore, the dinuclear ferroxidase center of Ach Bfr has only a single iron bound, in contrast to the two Fe atoms in other Bfrs. The structure of Ach Bfr clearly demonstrates the substitution of a glutamate residue, which is involved in the interaction with the second Fe atom, by a threonine and the consequent absence of another Fe atom there. The iron at the dinuclear center has a tetravalent coordination, while a second iron with a hexavalent coordination was found within the porphyrin ring, generating a heme moiety. Achromobacter spp. are known opportunistic pathogens; this structure enhances the current understanding of their iron metabolism and regulation, and importantly will be useful in the design of small-molecule inhibitors against this protein through a structure-guided approach.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57540-57551 ◽  
Author(s):  
Neelam Mangwani ◽  
Sudhir K. Shukla ◽  
Supriya Kumari ◽  
Surajit Das ◽  
T. Subba Rao

This study with ten marine isolates demonstrates that the attached phenotypes of the marine bacteria showed significant variation in biofilm architecture and, in turn, biodegradation of PAHs.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14147-14155 ◽  
Author(s):  
A. Moslehyani ◽  
A. F. Ismail ◽  
M. H. D. Othman ◽  
T. Matsuura

This paper focuses on the potential of a novel flat sheet nanocomposite titanium dioxide (TiO2)-halloysite nanotubes (HNTs)/polyvinylidene fluoride (PVDF) membrane as a photocatalytic separator in the photocatalytic membrane reactor (PMR).


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


2013 ◽  
Vol 41 (1) ◽  
pp. 393-398 ◽  
Author(s):  
Sabrina Fröls

Biofilms or multicellular structures become accepted as the dominant microbial lifestyle in Nature, but in the past they were only studied extensively in bacteria. Investigations on archaeal monospecies cultures have shown that many archaeal species are able to adhere on biotic and abiotic surfaces and form complex biofilm structures. Biofilm-forming archaea were identified in a broad range of extreme and moderate environments. Natural biofilms observed are mostly mixed communities composed of archaeal and bacterial species of various abundances. The physiological functions of the archaea identified in such mixed communities suggest a significant impact on the biochemical cycles maintaining the flow and recycling of the nutrients on earth. Therefore it is of high interest to investigate the characteristics and mechanisms underlying the archaeal biofilm formation. In the present review, I summarize and discuss the present investigations of biofilm-forming archaeal species, i.e. their diverse biofilm architectures in monospecies or mixed communities, the identified EPSs (extracellular polymeric substances), archaeal structures mediating surface adhesion or cell–cell connections, and the response to physical and chemical stressors implying that archaeal biofilm formation is an adaptive reaction to changing environmental conditions. A first insight into the molecular differentiation of cells within archaeal biofilms is given.


Author(s):  
Siti Shilatul Najwa Sharuddin ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nur ‘Izzati Ismail ◽  
Ahmad Razi Othman ◽  
Hassimi Abu Hasan

Sign in / Sign up

Export Citation Format

Share Document