toxin class
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 446 ◽  
Author(s):  
Christian Zurhelle ◽  
Joyce Nieva ◽  
Urban Tillmann ◽  
Tilmann Harder ◽  
Bernd Krock ◽  
...  

Cyclic imine toxins are neurotoxic, macrocyclic compounds produced by marine dinoflagellates. Mass spectrometric screenings of extracts from natural plankton assemblages revealed a high chemical diversity among this toxin class, yet only few toxins are structurally known. Here we report the structural characterization of four novel cyclic-imine toxins (two gymnodimines (GYMs) and two spirolides (SPXs)) from cultures of Alexandrium ostenfeldii. A GYM with m/z 510 (1) was identified as 16-desmethylGYM D. A GYM with m/z 526 was identified as the hydroxylated degradation product of (1) with an exocyclic methylene at C-17 and an allylic hydroxyl group at C-18. This compound was named GYM E (2). We further identified a SPX with m/z 694 as 20-hydroxy-13,19-didesmethylSPX C (10) and a SPX with m/z 696 as 20-hydroxy-13,19-didesmethylSPX D (11). This is the first report of GYMs without a methyl group at ring D and SPXs with hydroxyl groups at position C-20. These compounds can be conceived as derivatives of the same nascent polyketide chain, supporting the hypothesis that GYMs and SPXs are produced through common biosynthetic genes. Both novel GYMs 1 and 2 were detected in significant amounts in extracts from natural plankton assemblages (1: 447 pg; 2: 1250 pg; 11: 40 pg per mL filtered seawater respectively).


Toxins ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 324 ◽  
Author(s):  
Natalia Vilariño ◽  
M. Louzao ◽  
Paula Abal ◽  
Eva Cagide ◽  
Cristina Carrera ◽  
...  

Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.


Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 283 ◽  
Author(s):  
Frederic Pitois ◽  
Jutta Fastner ◽  
Christelle Pagotto ◽  
Magali Dechesne

Cyanobacteria are known to produce a wide array of metabolites, including various classes of toxins. Among these, hepatotoxins (Microcystins), neurotoxins (Anatoxin-A and PSP toxins) or cytotoxins (Cylindrospermopsins) have been subjected to numerous, individual studies during the past twenty years. Reports of toxins co-occurrences, however, remain scarce in the literature. The present work is an inventory of cyanobacteria with a particular focus on Nostocales and their associated toxin classes from 2007 to 2010 in ten lakes used for drinking water production in France. The results show that potential multiple toxin producing species are commonly encountered in cyanobacteria populations. Individual toxin classes were detected in 75% of all samples. Toxin co-occurrences appeared in 40% of samples as two- or three-toxin combinations (with 35% for the microcystins–anatoxin combination), whereas four-toxin class combinations only appeared in 1% of samples. Toxin co-occurrences could be partially correlated to species composition and water temperature. Peak concentrations however could never be observed simultaneously and followed distinct, asymmetrical distribution patterns. As observations are the key for preventive management and risk assessment, these results indicate that water monitoring should search for all four toxin classes simultaneously instead of focusing on the most frequent toxins, i.e., microcystins.


Author(s):  
Abdullah Husin ◽  
Othman Mahmod ◽  
Lisa Afrinanda

One of the important seafoods in the food consumption of humans is shrimp. Although shrimp contains proteins that are needed by the human body, sometimes it contains toxins. This is due to environmental factors or catching processes that may use toxins. Therefore, the community should take precautions when consuming shrimp. White shrimp (Litopenaeus vannamei) is one type of shrimp that is preferred because of its delicious taste. The purpose of this research is to develop a computerized system for poisonous white shrimp detection. The category of white shrimps consists of two kinds, i.e., fresh white shrimps that are caught in a natural way (class A), and poisonous white shrimps that are caught by using toxin (class B). The features used are RGB colors (red, green, and blue) and texture (energy, contrast, correlation, and homogeneity). A similarity-based classification is performed by the k-Nearest Neighbor (k-NN) algorithm. The experiment was conducted on a dataset consisting of 90 white shrimp images. The holdout validation method was used to evaluate the system. The original dataset was divided into two parts, whereby 60 images were used as training samples and 30 images were used as testing images. Based on the evaluation results, it can be concluded that the classification accuracy is 73.33%. The benefit of the developed system is to help the community in selecting good and safe white shrimps.


1992 ◽  
Vol 176 (6) ◽  
pp. 1779-1784 ◽  
Author(s):  
P Panina-Bordignon ◽  
X T Fu ◽  
A Lanzavecchia ◽  
R W Karr

Staphylococcal toxic shock syndrome toxin 1 (TSST-1) binds to major histocompatibility complex class II molecules, and the toxin-class II complexes induce proliferation of T cells expressing V beta 2 sequences. To define the residues involved in TSST-1 binding, a set of transfectants expressing 21 HLA-DR alpha chain mutants were analyzed for their abilities to bind and present TSST-1 and to present an antigenic peptide. Mutations at DR alpha positions 36 and 39 markedly decreased the ability of the DR7 molecule to bind and present TSST-1 but did not affect the ability to present an antigenic peptide. These data indicate that DR alpha residues 36 and 39, predicted to be located on an outer loop, are important in the formation of the TSST-1 binding site on DR molecules.


Sign in / Sign up

Export Citation Format

Share Document