scholarly journals MOLECULAR SWITCH BASED ON BITHIOPHENE-AZOBENZENE: HOW TO CONTROL CONDUCTANCE THROUGH THE MONOLAYER USING LIGHT

Author(s):  
Владислав Анатольевич Савченко ◽  
Ольга Александровна Гуськова

Молекулярные переключатели на основе азобензола (азо) являются светочувствительными молекулами, которые могут переключаться между двумя конфигурационными состояниями под действием света. Светочувствительные азо -монослои можно использовать для модуляции работы выхода, то есть они влияют на свойства электродов. В данной работе мы отвечаем на вопрос, что происходит со структурами, электронными свойствами и перераспределением заряда в монослоях азобитиофена (азо-бт) в зависимости от светового стимула, используя теорию функционала плотности. Моделируются два типа переключателей, различающихся расположением азо и бт от группы пришивки молекулы к поверхности: азо-бт и бт-азо . Один из них (бт-азо) описан в литературе, другой же является продуктом молекулярного дизайна. Мы описываем транс- и цис-изомеры для каждого переключателя, находящегося в контакте с кластером золота. Наше моделирование объясняет гигантское соотношение в проводимости ON/OFF-состояний при воздействии УФ-излучения на монослой улучшенной электронной связью между цис-изомерами (состояние ON) и кластером золота. Транс-изомеры же (OFF состояние) моделируемых переключателей играют роль изоляторов. Кроме того, мы показываем, какие именно свойства улучшаются после молекулярного дизайна. Данное исследование открывает новые возможности в разработке инновационных модификаций поверхности электродов. Molecular switches based on azobenzene (azo) are defined as light-responsive molecules which can change between two configurational states under light stimuli. Responsive azo monolayers can be used to modulate the work function, i.e. they tune the properties of the interfaces at the electrodes. In this work, we investigate what happens to the structures, electronic properties, and the charge redistribution within azo-bithiophene (azo-bt) monolayers depending on the light stimulus using density functional theory. Two types of switches differing in the order of azo and bt counting from the anchor group are modelled: azo-bt and bt-azo . One of them (bt-azo) is known from the literature, the remaining one is a product of rational design. We describe trans- and cis-isomers for each switch being in a contact with a gold cluster. Our simulations explain a giant ON/OFF conductance ratio upon UV light stimulus by improved electronic coupling between the cis-isomers (ON-state) and the gold cluster. The trans-isomers (OFF-state) of the simulated switches play the role of the insulators. Moreover, we show which molecular properties are enchanced by molecular design. This study opens up new avenues to the development of the innovative design of electrode surface modifications.

2019 ◽  
Vol 3 (6) ◽  
pp. 1238-1243 ◽  
Author(s):  
Shuang Fu ◽  
Quan Luo ◽  
Mingsong Zang ◽  
Jun Tian ◽  
Zherui Zhang ◽  
...  

A light-stimuli-responsive supramolecular azobenzene-containing M2L4 cage has been designed and synthesized. This cage can be reversibly disassembled/reassembled mediated by the azo-ligand under visible and UV light irradiation.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1019
Author(s):  
Domenico Pirone ◽  
Nuno A. G. Bandeira ◽  
Bartosz Tylkowski ◽  
Emily Boswell ◽  
Regine Labeque ◽  
...  

A molecular design approach was used to create asymmetrical visible light-triggered azo-derivatives that can be good candidates for polymer functionalization. The specific electron–donor substituted molecules were characterized and studied by means of NMR analyses and UV-visible spectroscopy, comparing the results with Time Dependent Density Functional (TD-DFT) calculations. A slow rate of isomerization (ki = 1.5 × 10−4 s−1) was discovered for 4-((2-hydroxy-5methylphenyl) diazenyl)-3-methoxybenzoic acid (AZO1). By methylating this moiety, it was possible to unlock the isomerization mechanism for the second molecule, methyl 3-methoxy-4-((2-methoxy-5-methylphenyl) diazenyl)benzoate (AZO2), reaching promising isomerization rates with visible light irradiation in different solvents. It was discovered that this rate was heightened by one order of magnitude (ki = 3.1 × 10−3 s−1) for AZO2. A computational analysis using density functional (DFT/PBE0) and wavefunction (QD-NEVPT2) methodologies provided insight into the photodynamics of these systems. Both molecules require excitation to the second (S2) excited state situated in the visible region to initiate the isomerization. Two classic mechanisms were considered, namely rotation and inversion, with the former being energetically more favorable. These azo-derivatives show potential that paves the way for future applications as building blocks of functional polymers. Likewise, they could be really effective for the modification of existing commercial polymers, thus transferring their stimuli responsive properties to polymeric bulky structures, converting them into smart materials.


Author(s):  
Vladyslav Savchenko ◽  
Markus Koch ◽  
Aleksander S. Pavlov ◽  
Marina Saphiannikova ◽  
Olga Guskova

In this paper, the columnar supramolecular aggregates of photosensitive star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core and azobenzene arms are analysed theoretically applying a combination of computer simulation techniques. Without a light stimulus, the trans-stars build one-dimensional columns of stacked molecules during the first stage of the noncovalent association. These columnar aggregates represent the structural elements of more complex experimentally observed morphologies -- fibers, spheres, gels and others. Upon UV light exposure, the azobenzene arms isomerise from thermodynamically stable planar trans- to a metastable kinked cis-state influencing the aggregate morphology. Here, we determine the most favourable mutual orientations of the \textit{trans}-stars in the stack in terms of (i) the pi-pi distance between the cores lengthwise the aggregate, (ii) the star slipped displacements and (iii) the rotation promoting the helical twist and chirality of the aggregate by calculating the binding energy diagrams using density functional theory. The model predictions are further compared with available experimental data. The intermolecular forces responsible for the stability of the stacks made of trans-azobenzene stars in crystals are quantified using Hirshfeld surface analysis. Finally, to characterize the self-assembly mechanism of such stars in solution, we calculate the hydrogen bond lengths, the normalized dipole moment and the binding energies as the functions of the columnar length using molecular dynamics trajectories, and conclude about the cooperative nature of this process.


RSC Advances ◽  
2016 ◽  
Vol 6 (35) ◽  
pp. 29106-29115 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Hak-Bong Kim ◽  
Jae-Ho Bae ◽  
Sun-Hee Kim ◽  
Chang-Sik Ha

The drug carrier system proposed here efficiently works under UV light and pH triggers for controlled release of model cargoes. The nanocarrier can be used in the targeted delivery of cargoes by the ‘ON’ and ‘OFF’ command by the UV light trigger.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2037 ◽  
Author(s):  
James A. Findlay ◽  
Jonathan E. Barnsley ◽  
Keith C. Gordon ◽  
James D. Crowley

To realise useful control over molecular motion in the future an extensive toolbox of both actionable molecules and stimuli-responsive units must be developed. Previously, our laboratory has reported 1,1′-disubstituted ferrocene (Fc) rotor units which assume a contracted/π-stacked conformation until complexation of cationic metal ions causes rotation about the Ferrocene (Fc) molecular ‘ball-bearing’. Herein, we explore the potential of using the photochemical ejection of [Ru(2,2′-bipyridyl)2]2+ units as a stimulus for the rotational contraction of new ferrocene rotor units. Fc rotors with both ‘regular’ and ‘inverse’ 2-pyridyl-1,2,3-triazole binding pockets and their corresponding [Ru(2,2′-bipyridyl)2]2+ complexes were synthesised. The rotors and complexes were characterised using nuclear magnetic resonance (NMR) and ultraviolet (UV)-visible spectroscopies, Electro-Spray Ionisation Mass Spectrometry (ESI–MS), and electrochemistry. The 1,1′-disubstituted Fc ligands were shown to π-stack both in solution and solid state. Density Functional Theory (DFT) calculations (CAM-B3LYP/6-31G(d)) support the notion that complexation to [Ru(2,2′-bipyridyl)2]2+ caused a rotation from the syn- to the anti-conformation. Upon photo-irradiation with UV light (254 nm), photo-ejection of the [Ru(2,2′-bipyridyl)2(CH3CN)2]2+ units in acetonitrile was observed. The re-complexation of the [Ru(2,2′-bipyridyl)2]2+ units could be achieved using acetone as the reaction solvent. However, the process was exceedingly slowly. Additionally, the Fc ligands slowly decomposed when exposed to UV irradiation meaning that only one extension and contraction cycle could be completed.


2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


2019 ◽  
Vol 20 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Lin Ning ◽  
Bifang He ◽  
Peng Zhou ◽  
Ratmir Derda ◽  
Jian Huang

Background:Peptide-Fc fusion drugs, also known as peptibodies, are a category of biological therapeutics in which the Fc region of an antibody is genetically fused to a peptide of interest. However, to develop such kind of drugs is laborious and expensive. Rational design is urgently needed.Methods:We summarized the key steps in peptide-Fc fusion technology and stressed the main computational resources, tools, and methods that had been used in the rational design of peptide-Fc fusion drugs. We also raised open questions about the computer-aided molecular design of peptide-Fc.Results:The design of peptibody consists of four steps. First, identify peptide leads from native ligands, biopanning, and computational design or prediction. Second, select the proper Fc region from different classes or subclasses of immunoglobulin. Third, fuse the peptide leads and Fc together properly. At last, evaluate the immunogenicity of the constructs. At each step, there are quite a few useful resources and computational tools.Conclusion:Reviewing the molecular design of peptibody will certainly help make the transition from peptide leads to drugs on the market quicker and cheaper.


2021 ◽  
Vol 03 (02) ◽  
pp. 090-096
Author(s):  
Yusuke Ishigaki ◽  
Kota Asai ◽  
Takuya Shimajiri ◽  
Tomoyuki Akutagawa ◽  
Takanori Fukushima ◽  
...  

The crystal structures of a series of tetracyanonaphthoquinodimethanes fused with a selenadiazole or thiadiazole ring revealed that their molecular packing is determined mainly by two intermolecular interactions: chalcogen bond (ChB) and weak hydrogen bond (WHB). ChB between Se and a cyano group dictates the packing of selenadiazole derivatives, whereas the S-based ChB is much weaker and competes with WHB in thiadiazole analogues. This difference can be explained by different electrostatic potentials as revealed by density functional theory calculations. A proper molecular design that weakens WHB can change the contribution of ChB in determining the crystal packing of thiadiazole derivatives.


Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Sign in / Sign up

Export Citation Format

Share Document