vehicle to infrastructure communication
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 33)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Wang ◽  
Chenle Wang ◽  
Kan Wang ◽  
Qiaoyong Jiang ◽  
Bin Wang ◽  
...  

In a vehicular ad hoc network (VANET), roadside units (RSUs) are installed at roadside and intersections to process vehicle-to-infrastructure communication, collect and analyse intelligent vehicle traffic data, send information to vehicles, and achieve early warning of safe driving of vehicles. Owning to the high cost of implementing and maintaining RSUs, it is of vital importance to determine where and how many RSUs to deploy. Optimal RSU deployment requires both a small number of RSUs and the maximum coverage of vehicle running process, which constitutes a conflicting multiobjective problem. Nevertheless, existing works do not explicitly utilize multiobjective algorithm to solve the RSU deployment problem. Therefore, a multiobjective differential evolution approach is proposed in this work to solve the problem. Firstly, to conquer the complexity of urban road RSU deployment, the static model is established. Secondly, in the proposed multiobjective differential evolution with discrete elitist guide (MODE-deg), the sigmoid function is applied to discrete individual values. Finally, elitist individuals are selected based on crowding distance ranking and nondominated ranking to generate new individuals, which further improve the convergence speed and population performance. Experimental results show that MODE-deg can generate the optimal nondominant solution set with good convergence and diversity, in contrast to other multiobjective evolutionary algorithms in five test functions of ZDT.


2021 ◽  
Author(s):  
Manimegaai C T ◽  
kali muthu ◽  
sabitha gauni

Abstract These days population are taking a risk in their drive and in no time dangers are happening, and loosing lives by doing tiny wrongs when on drive near restricted zones. To escape these accidents to make population risk free traffic department are introducing signboards. But then again with the ignorance of the people, dangers are happening again, so “Li-Fi technology” is being used here to decrease the count of accidents. The transmission takes place with the help of LEDs (Light Emitting Diodes).Text, audio and video can also be transmitted with the help of this li-fi. The transmission is done when the light turns on and off. When this is compared to Wi-Fi it has many advantages like this light is not harmful to human body. The Transmission takes place in the form of zeroes and ones. Therefore to avoid accidents we suggested an intelligent, adaptable, and efficient model that utilizes Machine Learning techniques. The proposed system helps in vehicle to vehicle and vehicle to Infrastructure communication systems.


Author(s):  
Mengxiao Du ◽  
Shiyao Yang ◽  
Qun Chen

This paper explored the impacts of vehicle-to-infrastructure (V2I) communication on the mixed traffic flow consisting of connected vehicles (CVs) and human-driven vehicles (HVs). We developed a cellular automaton model for mixed flow at the signalized intersection. In addition to considering the motion characteristics of CVs and the influence of HVs on the motion behavior of CVs, the model also considered the influence of signal lights. CVs determine their velocities via V2I communication in order to pass the signal light with less delay and avoid stopping. Through simulations, we found that the presence, frequency and range of V2I communication all make a difference in the mixed flow. Also, 1-Hz communication reduces the number of vehicles within 300 m before the red light from 36 to 26, and the 10-Hz communication reduces one more; 1-Hz communication increases the number of accelerations, but when the frequency increases to 10 Hz, the number of accelerations decreases to the same value as without V2I communication, but the value of number of accelerations increases monotonously with the frequency; traffic delay decreases and capacity increases as the frequency increases. However, as the communication range increases, except that the number of accelerations first decreases and then increases, other traffic characteristics remain unchanged. The number of accelerations reaches a minimum at about 500 m.


Sign in / Sign up

Export Citation Format

Share Document