scholarly journals Influence of Controller’s Parameters on Static Bifurcation of Magnetic-Liquid Double Suspension Bearing

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8241
Author(s):  
Jianhua Zhao ◽  
Hanwen Zhang ◽  
Bo Qin ◽  
Yongqiang Wang ◽  
Xiaochen Wu ◽  
...  

Magnetic-Liquid Double Suspension Bearing (MLDSB) is composed of an electromagnetic supporting and a hydrostatic supporting system. Due to greater supporting capacity and static stiffness, it is appropriate for occasions of middle speed, overloading, and frequent starting. Because of the complicated structure of the supporting system, the probability and degree of static bifurcation of MLDSB can be increased by the coupling of hydrostatic force and electromagnetism force, and then the supporting capacity and operation stability are reduced. As the key part of MLDSB, the controller makes an important impact on its supporting capacity, operation stability, and reliability. Firstly, the mathematical model of MLDSB is established in the paper. Secondly, the static bifurcation point of MLDSB is determined, and the influence of parameters of the controller on singular point characteristics is analyzed. Finally, the influence of parameters of the controller on phase trajectories and basin of attraction is analyzed. The result showed that the pitchfork bifurcation will occur as proportional feedback coefficient Kp increases, and the static bifurcation point is Kp = −60.55. When Kp < −60.55, the supporting system only has one stable node (0, 0). When Kp > −60.55, the supporting system has one unstable saddle (0, 0) and two stable non-null focuses or nodes. The shape of the basin of attraction changed greatly as Kp increases from −60.55 to 30, while the outline of the basin of attraction is basically fixed as Kp increases from 30 to 80. Differential feedback coefficient Kd has no effect on the static bifurcation of MLDSB. The rotor phase trajectory obtained from theoretical simulation and experimental tests are basically consistent, and the error is due to the leakage and damping effect of the hydrostatic system within the allowable range of the engineering. The research in the paper can provide theoretical reference for static bifurcation analysis of MLDSB.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1195
Author(s):  
Jianhua Zhao ◽  
Yongqiang Wang ◽  
Xuchao Ma ◽  
Sheng Li ◽  
Dianrong Gao ◽  
...  

As a new type of suspension bearing, the magnetic liquid double suspension bearing (MLDSB) is mainly supported by electromagnetic suspension and supplemented by hydrostatic support. At present, the MLDSB adopts the regulation strategy of “electromagnetic-position feedback closed-loop, hydrostatic constant-flow supply” (referred to as CFC mode). In the equilibrium position, the external load is carried by the electromagnetic system, and the hydrostatic system produces no supporting force. Thus, the carrying capacity and supporting stiffness of the MLDSB can be reduced. To solve this problem, the double closed-loop control strategy of “electromagnetic system-force feedback inner loop and hydrostatic-position feedback outer loop” (referred to as DCL mode) was proposed to improve the bearing performance and operation stability of the MLDSB. First, the mathematical models of CFC mode and DCL mode of the single DOF supporting system were established. Second, the real-time variation laws of rotor displacement, flow/hydrostatic force, and regulating current/electromagnetic force in the two control modes were plotted, compared, and analyzed. Finally, the influence law of initial current, flow, and controller parameters on the dynamic and static characteristic index were analyzed in detail. The results show that compared with that in CFC mode, the displacement in DCL mode is smaller, and the adjustment time is shorter. The hydrostatic force is equal to the electromagnetic force in DCL mode when the rotor returns to the balance position. Moreover, the system in DCL mode has better robustness, and the initial flow has a more obvious influence on the dynamic and static characteristic indexes. This study provides a theoretical basis for stable suspension control and the safe and reliable operation of the MLDSB.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 865 ◽  
Author(s):  
Julian Gonzalez-Ayala ◽  
Moises Santillán ◽  
Maria Santos ◽  
Antonio Calvo Hernández ◽  
José Mateos Roco

Local stability of maximum power and maximum compromise (Omega) operation regimes dynamic evolution for a low-dissipation heat engine is analyzed. The thermodynamic behavior of trajectories to the stationary state, after perturbing the operation regime, display a trade-off between stability, entropy production, efficiency and power output. This allows considering stability and optimization as connected pieces of a single phenomenon. Trajectories inside the basin of attraction display the smallest entropy drops. Additionally, it was found that time constraints, related with irreversible and endoreversible behaviors, influence the thermodynamic evolution of relaxation trajectories. The behavior of the evolution in terms of the symmetries of the model and the applied thermal gradients was analyzed.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart which can move in one dimension. There is stick slip friction between the cart and the track on which it moves. Using two different models for this friction we design feedback controllers to stabilize the pendulum in the upright position. We show that controllers based on either friction model give better performance than one based on a simple viscous friction model. We then study the effect of time delay in this controller, by calculating the critical time delay where the system loses stability and comparing the calculated value with experimental data. Both models lead to controllers with similar robustness with respect to delay. Using numerical simulations, we show that the effective critical time delay of the experiment is much less than the calculated theoretical value because the basin of attraction of the stable equilibrium point is very small.


2008 ◽  
Vol 22 (20) ◽  
pp. 1941-1949 ◽  
Author(s):  
XINGYUAN WANG ◽  
MINGJUN WANG

With the occasional feedback method, the chaotic logistic map is stabilized at an unstable low-periodic orbit. In our method, the qualified feedback coefficient can be obtained through calculation instead of through simulation. Besides, the bifurcation control of the logistic map is studied, and a new scheme is proposed to change the parameter value of any one bifurcation point of this dynamic system optionally. Simulation results show the effectiveness of the methods.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 657-665 ◽  
Author(s):  
Yong Hu ◽  
Gangfeng Yan ◽  
Zhiyun Lin

SUMMARYThis paper investigates the stable-running problem of a planar underactuated biped robot, which has two springy telescopic legs and one actuated joint in the hip. After modeling the robot as a hybrid system with multiple continuous state spaces, a natural passive limit cycle, which preserves the system energy at touchdown, is found using the method of Poincaré shooting. It is then checked that the passive limit cycle is not stable. To stabilize the passive limit cycle, an event-based feedback control law is proposed, and also to enlarge the basin of attraction, an additive passivity-based control term is introduced only in the stance phase. The validity of our control strategies is illustrated by a series of numerical simulations.


Author(s):  
A. L. Schwab ◽  
M. Wisse

Abstract Passive dynamic walking is an important development for walking robots, supplying natural, energy-efficient motions. In practice, the cyclic gait of passive dynamic prototypes appears to be stable, only for small disturbances. Therefore, in this paper we research the basin of attraction of the cyclic walking motion for the simplest walking model. Furthermore, we present a general method for deriving the equations of motion and impact equations for the analysis of multibody systems, as in walking models. Application of the cell mapping method shows the basin of attraction to be a small, thin area. It is shown that the basin of attraction is not directly related to the stability of the cyclic motion.


2009 ◽  
Vol 19 (03) ◽  
pp. 1043-1049 ◽  
Author(s):  
DIOGO BAPTISTA ◽  
RICARDO SEVERINO ◽  
SANDRA VINAGRE

For parameter values which assure its existence, we characterize the basin of attraction for the Lozi map strange attractor.


Sign in / Sign up

Export Citation Format

Share Document