scholarly journals Scalar anomaly cancellation reveals the hidden superalgebraic structure of the quantum chiral SU(2/1) model of leptons and quarks

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jean Thierry-Mieg

Abstract At the classical level, the SU(2/1) superalgebra offers a natural description of the elementary particles: leptons and quarks massless states, graded by their chirality, fit the smallest irreducible representations of SU(2/1). Our new proposition is to pair the left/right space-time chirality with the superalgebra chirality and to study the model at the one-loop quantum level. If, despite the fact that they are non-Hermitian, we use the odd matrices of SU(2/1) to minimally couple an oriented complex Higgs scalar field to the chiral Fermions, novel anomalies occur. They affect the scalar propagators and vertices. However, these undesired new terms cancel out, together with the Adler-Bell-Jackiw vector anomalies, because the quarks compensate the leptons. The unexpected and striking consequence is that the scalar propagator must be normalized using the anti-symmetric super-Killing metric and the scalar-vector vertex must use the symmetric d_aij structure constants of the superalgebra. Despite this extraordinary structure, the resulting Lagrangian is actually Hermitian.

2021 ◽  
Vol 3 (1) ◽  
pp. 53-67
Author(s):  
Ghenadie Mardari

The phenomenon of quantum erasure exposed a remarkable ambiguity in the interpretation of quantum entanglement. On the one hand, the data is compatible with the possibility of arrow-of-time violations. On the other hand, it is also possible that temporal non-locality is an artifact of post-selection. Twenty years later, this problem can be solved with a quantum monogamy experiment, in which four entangled quanta are measured in a delayed-choice arrangement. If Bell violations can be recovered from a “monogamous” quantum system, then the arrow of time is obeyed at the quantum level.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Grit Kalies

AbstractQuantum mechanics for describing the behavior of microscopic entities and thermodynamics for describing macroscopic systems exhibit separate time concepts. Whereas many theories of modern physics interpret processes as reversible, in thermodynamics, an expression for irreversibility and the so-called time arrow has been developed: the increase of entropy. The divergence between complete reversibility on the one hand and irreversibility on the other is called the paradox of time. Since more than hundred years many efforts have been devoted to unify the time concepts. So far, the efforts were not successful. In this paper a solution is proposed on the basis of matter-energy equivalence with an energetic distinction between matter and mass. By refraining from interpretations predominant in modern theoretical physics, the first and second laws of thermodynamics can be extended to fundamental laws of nature, which are also valid at quantum level.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Abylaikhan Tlemisov

In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a color electric field or the energy flux and momentum. It is shown that the existence of such tubes depends crucially on the presence of the Higgs field (there are no such solutions without this field). We examine the dependence of the integral characteristics (linear energy and momentum densities) on the values of the electromagnetic potentials at the center of the tube, as well as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


2011 ◽  
Vol 41 (11) ◽  
pp. 2155-2167 ◽  
Author(s):  
Xavier Sanchez ◽  
Elena Roget ◽  
Jesus Planella ◽  
Francesc Forcat

Abstract The theoretical models of Batchelor and Kraichnan, which account for the smallest scales of a scalar field passively advected by a turbulent fluid (Prandtl &gt; 1), have been validated using shear and temperature profiles measured with a microstructure profiler in a lake. The value of the rate of dissipation of turbulent kinetic energy ɛ has been computed by fitting the shear spectra to the Panchev and Kesich theoretical model and the one-dimensional spectra of the temperature gradient, once ɛ is known, to the Batchelor and Kraichnan models and from it determining the value of the turbulent parameter q. The goodness of the fit between the spectra corresponding to these models and the measured data shows a very clear dependence on the degree of isotropy, which is estimated by the Cox number. The Kraichnan model adjusts better to the measured data than the Batchelor model, and the values of the turbulent parameter that better fit the experimental data are qB = 4.4 ± 0.8 and qK = 7.9 ± 2.5 for Batchelor and Kraichnan, respectively, when Cox ≥ 50. Once the turbulent parameter is fixed, a comparison of the value of ɛ determined from fitting the thermal gradient spectra to the value obtained after fitting the shear spectra shows that the Kraichnan model gives a very good estimate of the dissipation, which the Batchelor model underestimates.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


1949 ◽  
Vol 45 (2) ◽  
pp. 263-274 ◽  
Author(s):  
H. S. Green

The search for a theory of the elementary particles which is founded on the well-established principles of quantum mechanics and conforms at the same time with the requirements of the principle of relativity has, in recent years, taken several divergent directions. On the one hand, the second quantization of wave fields derived from a Lagrangian by a variational procedure(1) has succeeded in accounting for the existence and most of the properties of the electron, the photon, and the meson. On the other hand, many generalizations of the Dirac wave equation of the electron(2) have been attempted, with applications to the meson(3) and the proton(4). Heisenberg(5) has considered the much more difficult problem of the interaction between different particles, and has found that the key to the situation is the so-called ‘scattering matrix’, which is nothing other than a limiting form of the relativistic density matrix, as defined in § 2 of this paper. It seems probable that the relativistic density matrix ρ; or statistical operator, as it may be called without reference to representation, will play an important part in relativistic quantum mechanics in the future. It satisfies the same equation as the wave function, but differs from it in being a real linear operator, or a dynamical variable, in the terminology of Dirac.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev

AbstractWe consider non-Abelian SU(3) Proca theory with a Higgs scalar field included. Cylindrically symmetric solutions describing classical tubes either with the flux of a longitudinal electric field or with the energy flux (and hence with nonzero momentum density) are obtained. It is shown that, in quantum Proca theory, there can exist tubes both with the flux of the longitudinal electric field and with the energy flux/momentum density simultaneously. An imaginary particle – Proca proton – in which ‘quarks’ are connected by tubes with nonzero momentum density is considered. It is shown that this results in the appearance of the angular momentum related to the presence of the non-Abelian electric and magnetic fields in the tube, and this angular momentum is a part of the Proca proton spin.


2009 ◽  
Vol 21 (10) ◽  
pp. 1197-1240 ◽  
Author(s):  
HISHAM SATI ◽  
URS SCHREIBER ◽  
JIM STASHEFF

We study the cohomological physics of fivebranes in type II and heterotic string theory. We give an interpretation of the one-loop term in type IIA, which involves the first and second Pontrjagin classes of spacetime, in terms of obstructions to having bundles with certain structure groups. Using a generalization of the Green–Schwarz anomaly cancellation in heterotic string theory which demands the target space to have a String structure, we observe that the "magnetic dual" version of the anomaly cancellation condition can be read as a higher analog of String structure, which we call Fivebrane structure. This involves lifts of orthogonal and unitary structures through higher connected covers which are not just 3- but even 7-connected. We discuss the topological obstructions to the existence of Fivebrane structures. The dual version of the anomaly cancellation points to a relation of string and Fivebrane structures under electric-magnetic duality.


2002 ◽  
Vol 11 (10) ◽  
pp. 1531-1536
Author(s):  
L. RAUL ABRAMO ◽  
LEON BRENIG ◽  
EDGARD GUNZIG

In Einstein's gravity, non-minimal coupling of a scalar field to the scalar curvature leads to a paradoxical situation. On the one hand, it opens the way to qualitatively new cosmological dynamics. On the other hand, there are sectors of non-minimally coupled scalar-gravity theories for which the Einstein–Hilbert action reverses its sign, which seems to indicate that the whole system is unstable. We show how conformal coupling bypasses this problem. Due to a subtle interplay between gravity and the scalar field, classical and quantum stability are guaranteed globally. This liberates conformal coupling from a serious obstacle. Inflationary solutions in the new sector are also presented, which are validated by current observations.


Sign in / Sign up

Export Citation Format

Share Document