volume ionization
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Ileana Silvestre Patallo ◽  
Rebecca Carter ◽  
David Maughan ◽  
Andrew Nisbet ◽  
Giuseppe Schettino ◽  
...  

Abstract Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector’s orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform “user’s” quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.


2021 ◽  
Vol 161 ◽  
pp. S780-S781
Author(s):  
I. Silvestre Patallo ◽  
D. Maughan ◽  
R. Carter ◽  
A. Nisbet ◽  
G. Schettino ◽  
...  

2021 ◽  
Vol 39 (3) ◽  
pp. 533-548
Author(s):  
Tarjei Antonsen ◽  
Ingrid Mann ◽  
Jakub Vaverka ◽  
Libor Nouzak ◽  
Åshild Fredriksen

Abstract. We investigate the generation of charge due to collision between projectiles with sizes below ∼1 µm and metal surfaces at speeds ∼0.1 to 10 km s−1. This corresponds to speeds above the elastic limit and well below speeds where volume ionization can occur. Impact charge production at these low to intermediate speeds has traditionally been described by invoking the theory of shock wave ionization. By looking at the thermodynamics of the low-velocity solution of shock wave ionization, we find that such a mechanism alone is not sufficient to account for the recorded charge production in a number of scenarios in the laboratory and in space. We propose a model of capacitive contact charging that involves no direct ionization, in which we allow for projectile fragmentation upon impact. Furthermore, we show that this model describes measurements of metal–metal impacts in the laboratory well. We also address contact charging in the context of ice-on-metal collisions and apply our results to rocket observations of mesospheric dust. In general, we find that contact charging dominates at speeds of up to a few kilometres per second and complements shock wave ionization up to speeds where direct ionization can take place. The conditions that we consider can be applied to dust particles naturally occurring in space and in Earth's upper atmosphere and their direct impacts on rockets, spacecraft, and impacts of secondary ejecta.


2020 ◽  
Author(s):  
Tarjei Antonsen ◽  
Ingrid Mann ◽  
Jakub Vaverka ◽  
Libor Nouzak

<p>This work addresses the generation of charge during impacts of nano- to microscale projectiles on metal surfaces at speeds from 0.1 to 10 km/s. These speeds are well above the range of elastic deformation and well below speeds where volume ionization occures. Earlier models have utilized impurity diffusion through molten grains together with a Saha-equation to model impact ionization at these speeds. In this work we employ a model of capacitive contact charging in which we allow for projectile fragmentation upon impact. We show that this model well describes laboratory measurements of metal projectiles impacting metal targets. It also can describe in-situ measurements of dust in the Earth’s atmosphere made from rockets. We also address limitations of the currently most used model for impact ionization.</p>


2016 ◽  
Vol 43 (6Part24) ◽  
pp. 3633-3633
Author(s):  
V Arora ◽  
D Mathew ◽  
S Tanny ◽  
E Parsai ◽  
N Sperling

2015 ◽  
Vol 42 (6Part22) ◽  
pp. 3479-3479
Author(s):  
Y Xu ◽  
J Bhatnagar ◽  
M Saiful Huq

Sign in / Sign up

Export Citation Format

Share Document