transversal stiffness
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1374
Author(s):  
Paul Bere ◽  
Mircea Dudescu ◽  
Călin Neamțu ◽  
Cătălin Cocian

Composite materials are very often used in the manufacture of lightweight parts in the automotive industry, manufacturing of cost-efficient elements implies proper technology combined with a structural optimization of the material structure. The paper presents the manufacturing process, experimental and numerical analyses of the mechanical behavior for two composite hoods with different design concepts and material layouts as body components of a small electric vehicle. The first model follows the black metal design and the second one is based on the composite design concept. Manufacturing steps and full details regarding the fabrication process are delivered in the paper. Static stiffness and strain values for lateral, longitudinal and torsional loading cases were investigated. The first composite hood is 254 times lighter than a similar steel hood and the second hood concept is 22% lighter than the first one. The improvement in terms of lateral stiffness for composite hoods about a similar steel hood is for the black metal design concept about 80% and 157% for the hood with a sandwich structure and modified backside frame. Transversal stiffness is few times higher for both composite hoods while the torsional stiffness has an increase of 62% compared to a similar steel hood.


2020 ◽  
Vol 10 (23) ◽  
pp. 8711
Author(s):  
Juan Manuel García-Guerrero ◽  
Juan José Jorquera-Lucerga

In tied-arch bridges with a single arch, the deck is usually suspended from the arch by means of a single set of cables, pinned at both ends and anchored to the centerline, using either vertical or Nielsen-type hanger arrangements. When properly designed, this layout can significantly reduce forces and deflections under loads that are symmetrical with respect to the plane of the arch. However, it does not contribute to the support of nonsymmetrical loads, such as eccentric loads distributions or wind loading, and does not reduce the sensibility of the arch to out-of-plane buckling. Thus, this paper studies how a cable arrangement composed of two sets of lateral hangers, attached to both edges of a deck, can be very suitable to address these problems. Firstly, it is demonstrated that the structural behavior under symmetrical loads improves with respect to the bridge with centered hangers. Secondly, it is shown how nonsymmetric loads are partially carried by structural systems (such as the transversal stiffness both of the arch and the deck) that would remain inactive for tied-arch bridges with centered hangers, leading to a general reduction in the forces and the deflections of the bridge and in the critical buckling load of the arch.


2014 ◽  
Vol 116 (10) ◽  
pp. 1315-1323 ◽  
Author(s):  
I. V. Ogneva ◽  
M. V. Maximova ◽  
I. M. Larina

The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers.


2013 ◽  
Vol 104 (2) ◽  
pp. 36a
Author(s):  
Patrick Lang ◽  
Wolfgang A. Linke

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
I. V. Ogneva ◽  
T. M. Mirzoev ◽  
N. S. Biryukov ◽  
O. M. Veselova ◽  
I. M. Larina

The goal of the research was to identify the structural and functional characteristics of the rat's left ventricle under antiorthostatic suspension within 1, 3, 7 and 14 days, and subsequent 3 and 7-day reloading after a 14-day suspension. The transversal stiffness of the cardiomyocyte has been determined by the atomic force microscopy, cell respiration—by polarography and proteins content—by Western blotting. Stiffness of the cortical cytoskeleton increases as soon as one day after the suspension and increases up to the 14th day, and starts decreasing during reloading, reaching the control level after 7 days. The stiffness of the contractile apparatus and the intensity of cell respiration also increases. The content of non-muscle isoforms of actin in the cytoplasmic fraction of proteins does not change during the whole experiment, as does not the beta-actin content in the membrane fraction. The content of gamma-actin in the membrane fraction correlates with the change in the transversal stiffness of the cortical cytoskeleton. Increased content of alpha-actinin-1 and alpha-actinin-4 in the membrane fraction of proteins during the suspension is consistent with increased gamma-actin content there. The opposite direction of change of alpha-actinin-1 and alpha-actinin-4 content suggests their involvement into the signal pathways.


2011 ◽  
Vol 68 (9-10) ◽  
pp. 1478-1485 ◽  
Author(s):  
I.V. Ogneva ◽  
E.V. Ponomareva ◽  
N.L. Kartashkina ◽  
E.G. Altaeva ◽  
N.M. Fokina ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
I. V. Ogneva

The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.


Sign in / Sign up

Export Citation Format

Share Document