scholarly journals Structure and Functional Characteristics of Rat’s Left Ventricle Cardiomyocytes under Antiorthostatic Suspension of Various Duration and Subsequent Reloading

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
I. V. Ogneva ◽  
T. M. Mirzoev ◽  
N. S. Biryukov ◽  
O. M. Veselova ◽  
I. M. Larina

The goal of the research was to identify the structural and functional characteristics of the rat's left ventricle under antiorthostatic suspension within 1, 3, 7 and 14 days, and subsequent 3 and 7-day reloading after a 14-day suspension. The transversal stiffness of the cardiomyocyte has been determined by the atomic force microscopy, cell respiration—by polarography and proteins content—by Western blotting. Stiffness of the cortical cytoskeleton increases as soon as one day after the suspension and increases up to the 14th day, and starts decreasing during reloading, reaching the control level after 7 days. The stiffness of the contractile apparatus and the intensity of cell respiration also increases. The content of non-muscle isoforms of actin in the cytoplasmic fraction of proteins does not change during the whole experiment, as does not the beta-actin content in the membrane fraction. The content of gamma-actin in the membrane fraction correlates with the change in the transversal stiffness of the cortical cytoskeleton. Increased content of alpha-actinin-1 and alpha-actinin-4 in the membrane fraction of proteins during the suspension is consistent with increased gamma-actin content there. The opposite direction of change of alpha-actinin-1 and alpha-actinin-4 content suggests their involvement into the signal pathways.

2019 ◽  
Author(s):  
Daniel Blumenthal ◽  
Lyndsay Avery ◽  
Vidhi Chandra ◽  
Janis K. Burkhardt

ABSTRACTT cell activation by dendritic cells (DCs) involves forces exerted by the T cell actin cytoskeleton, which are opposed by the cortical cytoskeleton of the interacting APC. During an immune response, DCs undergo a maturation process that optimizes their ability to efficiently prime naïve T cells. Using atomic force microscopy, we find that during maturation, DC cortical stiffness increases via process that involves actin polymerization. Using stimulatory hydrogels and DCs expressing mutant cytoskeletal proteins, we find that increasing stiffness lowers the agonist dose needed for T cell activation. CD4+ T cells exhibit much more profound stiffness-dependency than CD8+ T cells. Finally, stiffness responses are most robust when T cells are stimulated with pMHC rather than anti-CD3ε, consistent with a mechanosensing mechanism involving receptor deformation. Taken together, our data reveal that maturation-associated cytoskeletal changes alter the biophysical properties of DCs, providing mechanical cues that costimulate T cell activation.


2015 ◽  
Vol 309 (5) ◽  
pp. H918-H925 ◽  
Author(s):  
Michael E. Nance ◽  
Justin T. Whitfield ◽  
Yi Zhu ◽  
Anne K. Gibson ◽  
Laurin M. Hanft ◽  
...  

The Frank-Starling mechanism, whereby increased diastolic filling leads to increased cardiac output, depends on increasing the sarcomere length ( Ls) of cardiomyocytes. Ventricular stiffness increases with advancing age, yet it remains unclear how such changes in compliance impact sarcomere dynamics in the intact heart. We developed an isolated murine heart preparation to monitor Ls as a function of left ventricular pressure and tested the hypothesis that sarcomere lengthening in response to ventricular filling is impaired with advanced age. Mouse hearts isolated from young (3–6 mo) and aged (24–28 mo) C57BL/6 mice were perfused via the aorta under Ca2+-free conditions with the left ventricle cannulated to control filling pressure. Two-photon imaging of 4-{2-[6-(dioctylamino)-2-naphthalenyl]ethenyl}1-(3-sulfopropyl)-pyridinium fluorescence was used to monitor t-tubule striations and obtain passive Ls between pressures of 0 and 40 mmHg. Ls values (in μm, aged vs. young, respectively) were 2.02 ± 0.04 versus 2.01 ± 0.02 at 0 mmHg, 2.13 ± 0.04 versus 2.23 ± 0.02 at 5 mmHg, 2.21 ± 0.03 versus 2.27 ± 0.03 at 10 mmHg, and 2.28 ± 0.02 versus 2.36 ± 0.01 at 40 mmHg, indicative of impaired sarcomere lengthening in aged hearts. Atomic force microscopy nanoindentation revealed that intact cardiomyocytes enzymatically isolated from aged hearts had increased stiffness compared with those of young hearts (elastic modulus: aged, 41.9 ± 5.8 kPa vs. young, 18.6 ± 3.3 kPa; P = 0.006). Impaired sarcomere lengthening during left ventricular filling may contribute to cardiac dysfunction with advancing age by attenuating the Frank-Starling mechanism and reducing stroke volume.


2004 ◽  
Vol 187 (1-2) ◽  
pp. 51-62 ◽  
Author(s):  
Hiroshi Wada ◽  
Kei Kimura ◽  
Takashi Gomi ◽  
Michiko Sugawara ◽  
Yukio Katori ◽  
...  

Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Sign in / Sign up

Export Citation Format

Share Document