thalamic structure
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hayden Danyluk ◽  
Jennifer Andrews ◽  
Rohit Kesarwani ◽  
Peter Seres ◽  
Robert Broad ◽  
...  

Abstract Background Medically-refractory trigeminal neuralgia (TN) can be treated successfully with operative intervention, but a significant proportion of patients are non-responders despite undergoing technically successful surgery. The thalamus is a key component of the trigeminal sensory pathway involved in transmitting facial pain, but the role of the thalamus in TN, and its influence on durability of pain relief after TN surgery, are relatively understudied. We aimed to test the hypothesis that variations in thalamic structure and metabolism are related to surgical non-response in TN. Methods We performed a longitudinal, peri-operative neuroimaging study of the thalamus in medically-refractory TN patients undergoing microvascular decompression or percutaneous balloon compression rhizotomy. Patients underwent structural MRI and MR spectroscopy scans pre-operatively and at 1-week following surgery, and were classified as responders or non-responders based on 1-year post-operative pain outcome. Thalamus volume, shape, and metabolite concentration (choline/creatine [Cho/Cr] and N-acetylaspartate/creatine [NAA/Cr]) were evaluated at baseline and 1-week, and compared between responders, non-responders, and healthy controls. Results Twenty healthy controls and 23 patients with medically-refractory TN treated surgically (17 responders, 6 non-responders) were included. Pre-operatively, TN patients as a group showed significantly larger thalamus volume contralateral to the side of facial pain. However, vertex-wise shape analysis showed significant contralateral thalamus volume reduction in non-responders compared to responders in an axially-oriented band spanning the outer thalamic circumference (peak p = 0.019). Further, while pre-operative thalamic metabolite concentrations did not differ between responders and non-responders, as early as 1-week after surgery, long-term non-responders showed a distinct decrease in contralateral thalamic Cho/Cr and NAA/Cr, irrespective of surgery type, which was not observed in responders. Conclusions Atrophy of the contralateral thalamus is a consistent feature across patients with medically-refractory TN. Regional alterations in preoperative thalamic structure, and very early post-operative metabolic changes in the thalamus, both appear to influence the durability of pain relief after TN surgery.


2021 ◽  
Vol 13 (3) ◽  
pp. 225-244
Author(s):  
Luis Carretié ◽  
Raghunandan K. Yadav ◽  
Constantino Méndez-Bértolo

Initial evaluation structures (IESs) currently proposed as the earliest detectors of affective stimuli (e.g., amygdala, orbitofrontal cortex, or insula) are high-order structures (a) whose response latency cannot account for the first visual cortex emotion-related response (~80 ms), and (b) lack the necessary infrastructure to locally analyze the visual features that define emotional stimuli. Several thalamic structures accomplish both criteria. The lateral geniculate nucleus (LGN), a first-order thalamic nucleus that actively processes visual information, with the complement of the thalamic reticular nucleus (TRN) are proposed as core IESs. This LGN–TRN tandem could be supported by the pulvinar, a second-order thalamic structure, and by other extrathalamic nuclei. The visual thalamus, scarcely explored in affective neurosciences, seems crucial in early emotional evaluation.


2021 ◽  
Author(s):  
Hayden Danyluk ◽  
Jennifer Andrews ◽  
Rohit Kesarwani ◽  
Peter Seres ◽  
Robert Broad ◽  
...  

Abstract Background Medically-refractory trigeminal neuralgia (TN) can be treated successfully with operative intervention, but a significant proportion of patients are non-responders despite undergoing technically successful surgery. The thalamus is a key component of the trigeminal sensory pathway involved in transmitting facial pain, but the role of the thalamus in TN, and its influence on durability of pain relief after TN surgery, are relatively understudied. We aimed to test the hypothesis that variations in thalamic structure and metabolism are related to surgical non-response in TN. Methods We performed a longitudinal, peri-operative neuroimaging study of the thalamus in medically-refractory TN patients undergoing microvascular decompression or percutaneous balloon compression rhizotomy. Patients underwent structural MRI and MR spectroscopy scans pre-operatively and at 1-week following surgery, and were classified as responders or non-responders based on 1-year post-operative pain outcome. Thalamus volume, shape, and metabolite concentration (choline/creatine [Cho/Cr] and N-acetylaspartate/creatine [NAA/Cr]) were evaluated at baseline and 1-week, and compared between responders, non-responders, and healthy controls. Results Twenty healthy controls and 23 patients with medically-refractory TN treated surgically (17 responders, 6 non-responders) were included. Pre-operatively, TN patients as a group showed significantly larger thalamus volume contralateral to the side of facial pain. However, vertex-wise shape analysis showed significant contralateral thalamus volume reduction in non-responders compared to responders in an axially-oriented band spanning the outer thalamic circumference (peak p = 0.019). Further, while pre-operative thalamic metabolite concentrations did not differ between responders and non-responders, as early as 1-week after surgery, every single long-term non-responder showed a distinct decrease in contralateral thalamic Cho/Cr and NAA/Cr, irrespective of surgery type, which was not observed in responders. Conclusions Atrophy of the contralateral thalamus is a consistent feature across patients with medically-refractory TN. Regional alterations in preoperative thalamic structure, and very early post-operative metabolic changes in the thalamus, both appear to influence the durability of pain relief after TN surgery.


2021 ◽  
Author(s):  
Hayden Danyluk ◽  
Jennifer Andrews ◽  
Rohit Kesarwani ◽  
Peter Seres ◽  
Robert Broad ◽  
...  

Abstract Background: Medically-refractory trigeminal neuralgia (TN) can be treated successfully with operative intervention, but a significant proportion of patients are non-responders despite undergoing technically successful surgery. The thalamus is a key component of the trigeminal sensory pathway involved in transmitting facial pain, but the role of the thalamus in TN, and its influence on durability of pain relief after TN surgery, are relatively understudied. We aimed to test the hypothesis that variations in thalamic structure and metabolism are related to surgical non-response in TN. Methods: We performed a longitudinal, peri-operative neuroimaging study of the thalamus in medically-refractory TN patients undergoing microvascular decompression or percutaneous balloon compression rhizotomy. Patients underwent structural MRI and MR spectroscopy scans pre-operatively and at 1-week following surgery, and were classified as responders or non-responders based on 1-year post-operative pain outcome. Thalamus volume, shape, and metabolite concentration (choline/creatine [Cho/Cr] and N-acetylaspartate/creatine [NAA/Cr]) were evaluated at baseline and 1-week, and compared between responders, non-responders, and healthy controls. Results: Twenty healthy controls and 23 patients with medically-refractory TN treated surgically (17 responders, 6 non-responders) were included. Pre-operatively, TN patients as a group showed significantly larger thalamus volume contralateral to the side of facial pain. However, vertex-wise shape analysis showed significant contralateral thalamus volume reduction in non-responders compared to responders in an axially-oriented band spanning the outer thalamic circumference (peak p = 0.019). Further, while pre-operative thalamic metabolite concentrations did not differ between responders and non-responders, as early as 1-week after surgery, every single long-term non-responder showed a distinct decrease in contralateral thalamic Cho/Cr and NAA/Cr, irrespective of surgery type, which was not observed in responders.Conclusions: Atrophy of the contralateral thalamus is a consistent feature across patients with medically-refractory TN. Regional alterations in preoperative thalamic structure, and very early post-operative metabolic changes in the thalamus, both appear to influence the durability of pain relief after TN surgery.


2019 ◽  
Vol 35 (5) ◽  
pp. 946-948 ◽  
Author(s):  
Yu-Feng Shao ◽  
Jian-Sheng Lin ◽  
Yi-Ping Hou

Cephalalgia ◽  
2018 ◽  
Vol 39 (13) ◽  
pp. 1675-1682 ◽  
Author(s):  
Samaira Younis ◽  
Anders Hougaard ◽  
Rodrigo Noseda ◽  
Messoud Ashina

Objective To review and discuss the literature on the role of thalamic structure and function in migraine. Discussion The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. Conclusion A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.


2017 ◽  
Vol 381 ◽  
pp. 292
Author(s):  
L.E. Betting ◽  
E. Facer-Childs ◽  
A.P. Bagshaw

2015 ◽  
Vol 8 ◽  
pp. 462-472 ◽  
Author(s):  
Rafael Ceschin ◽  
Jessica L. Wisnowski ◽  
Lisa B. Paquette ◽  
Marvin D. Nelson ◽  
Stefan Blüml ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document