scholarly journals Responses to song playback differ in sleeping versus anesthetized songbirds

2022 ◽  
Author(s):  
Sarah W. Bottjer ◽  
Chloé L. Le Moing ◽  
Ellysia J. Li ◽  
Rachel C. Yuan

Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited in sleeping as well as anesthetized zebra finches, and the selectivity of responses to song playback in adult birds tends to be highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are highly similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.

2019 ◽  
Vol 121 (2) ◽  
pp. 530-548 ◽  
Author(s):  
Rachel C. Yuan ◽  
Sarah W. Bottjer

Procedural skill learning requires iterative comparisons between feedback of self-generated motor output and a goal sensorimotor pattern. In juvenile songbirds, neural representations of both self-generated behaviors (each bird’s own immature song) and the goal motor pattern (each bird’s adult tutor song) are essential for vocal learning, yet little is known about how these behaviorally relevant stimuli are encoded. We made extracellular recordings during song playback in anesthetized juvenile and adult zebra finches ( Taeniopygia guttata) in adjacent cortical regions RA (robust nucleus of the arcopallium), AId (dorsal intermediate arcopallium), and RA cup, each of which is well situated to integrate auditory-vocal information: RA is a motor cortical region that drives vocal output, AId is an adjoining cortical region whose projections converge with basal ganglia loops for song learning in the dorsal thalamus, and RA cup surrounds RA and receives inputs from primary and secondary auditory cortex. We found strong developmental differences in neural selectivity within RA, but not in AId or RA cup. Juvenile RA neurons were broadly responsive to multiple songs but preferred juvenile over adult vocal sounds; in addition, spiking responses lacked consistent temporal patterning. By adulthood, RA neurons responded most strongly to each bird’s own song with precisely timed spiking activity. In contrast, we observed a complete lack of song responsivity in both juvenile and adult AId, even though this region receives song-responsive inputs. A surprisingly large proportion of sites in RA cup of both juveniles and adults did not respond to song playback, and responsive sites showed little evidence of song selectivity. NEW & NOTEWORTHY Motor skill learning entails changes in selectivity for behaviorally relevant stimuli across cortical regions, yet the neural representation of these stimuli remains understudied. We investigated how information important for vocal learning in zebra finches is represented in regions analogous to infragranular layers of motor and auditory cortices during vs. after the developmentally regulated learning period. The results provide insight into how neurons in higher level stages of cortical processing represent stimuli important for motor skill learning.


2017 ◽  
Vol 284 (1859) ◽  
pp. 20171114 ◽  
Author(s):  
Nicole M. Baran ◽  
Samantha C. Peck ◽  
Tabitha H. Kim ◽  
Michael H. Goldstein ◽  
Elizabeth Adkins-Regan

Vocal learning from social partners is crucial for the successful development of communication in a wide range of species. Social interactions organize attention and enhance motivation to learn species-typical behaviour. However, the neurobiological mechanisms connecting social motivation and vocal learning are unknown. Using zebra finches ( Taeniopygia guttata ), a ubiquitous model for vocal learning, we show that manipulations of nonapeptide hormones in the vasopressin family (arginine vasotocin, AVT) early in development can promote or disrupt both song and social motivation. Young male zebra finches, like human infants, are socially gregarious and require interactive feedback from adult tutors to learn mature vocal forms. To investigate the role of social motivational mechanisms in song learning, in two studies, we injected hatchling males with AVT or Manning compound (MC, a nonapeptide receptor antagonist) on days 2–8 post-hatching and recorded song at maturity. In both studies, MC males produced a worse match to tutor song than controls. In study 2, which experimentally controlled for tutor and genetic factors, AVT males also learned song significantly better compared with controls. Furthermore, song similarity correlated with several measures of social motivation throughout development. These findings provide the first evidence that nonapeptides are critical to the development of vocal learning.


Author(s):  
Carien Mol ◽  
Johan J. Bolhuis ◽  
Sanne Moorman

Songbird vocal learning has interesting behavioural and neural parallels with speech acquisition in human infants. Zebra finch males sing one unique song that they imitate from conspecific males, and both sexes learn to recognize their father's song. Although males copy the stereotyped syllable sequence of their father's song, the role of sequential information in recognition remains unclear. Here, we investigated father's song recognition after changing the serial order of syllables (switching the middle syllables, first and last syllables, or playing all syllables in inverse order). Behavioural approach and call responses of adult male and female zebra finches to their father's versus unfamiliar songs in playback tests demonstrated significant recognition of father's song with all syllable-order manipulations. We then measured behavioural responses to normal versus inversed-order father's song. In line with our first results, the subjects did not differentiate between the two. Interestingly, when males' strength of song learning was taken into account, we found a significant correlation between song imitation scores and the approach responses to the father's song. These findings suggest that syllable sequence is not essential for recognition of father's song in zebra finches, but that it does affect responsiveness of males in proportion to the strength of vocal learning. This article is part of the theme issue ‘Vocal learning in animals and humans’.


2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


Science ◽  
2016 ◽  
Vol 351 (6270) ◽  
pp. 267-271 ◽  
Author(s):  
D. Vallentin ◽  
G. Kosche ◽  
D. Lipkind ◽  
M. A. Long
Keyword(s):  

2016 ◽  
Vol 8 (4) ◽  
pp. 34
Author(s):  
A. Villa Rus ◽  
J. C. Cigudosa ◽  
J. L. Carrasco Juan ◽  
A. Otero Gomez ◽  
T. Acosta Almeida ◽  
...  

<p class="1Body">With colourful plumage, charismatic character and vocal learning abilities, parrots are one of the most striking and recognizable bird groups. Their attractiveness has drawn human attention for centuries, and members of the Psittaciformes order were, also, among the first avian species to be subject to cytogenetic studies which have contributed to understand their taxonomic and evolutionary relationships.</p><p class="1Body">We present here the karyological results collected by the study of thirteen parrot species new to karyology. These results are additionally supported by G banded preparations obtained in five species.</p><p class="1Body">The order Psittaciformes is an interesting example of a, typically, non migratory avian lineage with Gondwanaland origin, whose evolutionary radiation has been shaped by the Cenozoic geographic and climatic events that affected the land masses derived from the Gondwanaland continental split.</p><p class="1Body">We discuss the results of our studies, in conjunction with the previously compiled Psittaciformes cytogenetic data to delineate a picture of the chromosomal evolution of the order, concurrently with the biogeographic history of the lands in the southern Hemisphere.</p><p class="1Body">Considering the available data on parrot cytogenetics, a "standard parrot karyotype pattern" is proposed for evolutionary comparisons.</p><p class="1Body">Several biogeographic, and phylogenetically related "karyogram patterns" are also identified, and mechanisms of chromosome rearrangement that associate this patterns among them, and with the standard parrot karyotype pattern are proposed. These schemes on parrot chromosomal variation are discussed in relation to the general avian chromosome evolutionary theses proposed by cytogenetic and molecular genomic researchers.</p>


Author(s):  
Tatia M.C. Lee ◽  
Wang Kai ◽  
Simon L. Collinson

Clinical neuropsychology in Asia has emerged from the interactions of multiple processes, including the development of psychology and its subdisciplines worldwide, the entering of psychology into Asia and ongoing intellectual influences from outside of Asia, indigenous responses to those external forces, and homegrown initiatives in studying brain-behavior relationships prior to and since the beginnings of modern neuropsychology. This chapter reviews the history of neuropsychology in China, Hong Kong, Singapore, and other Asian regions. With globalization and increasing ease of information exchange, neuropsychological practice in Asia will continue to be shaped by influence from the West interacting with the indigenization process to shape the development of neuropsychology in Asia. Rapid development of neuroscience leads to cutting-edge findings and discovery of brain-behavior relationships, which has and will continue to be one of the rich sources of information that guides and shapes neuropsychological practice in Asia and worldwide.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zachary Daniel Burkett ◽  
Nancy F Day ◽  
Todd Haswell Kimball ◽  
Caitlin M Aamodt ◽  
Jonathan B Heston ◽  
...  

Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 13-24
Author(s):  
F. Johnson ◽  
S. W. Bottjer

Forebrain nuclei that control learned vocal behavior in zebra finches are anatomically distinct and interconnected by a simple pattern of axonal pathways. In the present study, we examined afferent regulation of neuronal survival during development of the robust nucleus of the archistriatum (RA). RA projection neurons form the descending motor pathway of cortical vocal-control regions and are believed to be directly involved in vocal production. RA receives afferent inputs from two other cortical regions, the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the higher vocal center (HVC). However, because the ingrowth of HVC afferent input is delayed, lMAN projection neurons provide the majority of afferent input to RA during early vocal learning. lMAN afferent input to RA is of particular interest because lMAN is necessary for vocal learning only during a restricted period of development. By making lesions of lMAN in male zebra finches at various stages of vocal development (20-60 days of age) and in adults (&gt;90-days old), we asked whether the survival of RA neurons depends on lMAN afferent input, and if so whether such dependence changes over the course of vocal learning. The results showed that removal of lMAN afferent input induced the loss of over 40% of RA neurons among birds in early stages of vocal development (20 days of age). However, lMAN lesions lost the ability to induce RA neuron death among birds in later stages of vocal development (40 days of age and older). These findings indicate that many RA neurons require lMAN afferent input for their survival during early vocal learning, whereas the inability of lMAN lesions to induce RA neuron death in older birds may indicate a reduced requirement for afferent input or perhaps the delayed ingrowth of HVC afferent input (at approx. 35 days of age) provides an alternate source of afferent support. Removal of lMAN afferent input also dramatically increased the incidence of mitotic figures in RA, but only among 20-day-old birds at 2 days post-lesion. The early, acute nature of the mitotic events raises the possibility that cell division in RA may be regulated by lMAN afferent input.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (1) ◽  
pp. 73-73

Aside from the great theoretic interest, the experiments described in this paper have considerable practical importance in providing a means of studying the efficacy of treatments designed to prevent kernicterus. A comprehensive study of a strain of rats (the Gunn strain) which have a hereditary deficiency of the enzyme required to conjugate bilirubin, and thus develope jaundice due to increased concentration of unconjugated bilirubin in the blood and tissues. The rats developed kernicterus which was apparently identical with that seen in human beings and is the only example of kernicterus in animals that fulfills rigid criteria outlined by the authors. Extensive data on the natural history of the bilirubinemia and development of kernicterus in the rats, as determined by chemical and pathologic techniques, are provided. Bilirubin itself is incriminated as the toxic agent producing the characteristic changes in the brain in kernicterus. Sulfonamides were found to augment the toxic effects of bilirubin, apparently because of competition between bilirubin and sulfonamides for binding sites on serum albumin. Neither infection nor hypoxia appeared to aggravate the effects of bilirubin. Administration of sodium glucuronate to jaundiced rats was followed by a decrease in bilirubin in the serum which at times exceeded 50%. This was not accompanied by any postponement of the onset of signs of damage to the central nervous system and did not prevent development of kernicterus. It appeared that the decrease in bilirubin in the serum may have resulted from an increased transferral to tissues rather than elimination through renal excretion. On the basis of the knowledge of this strain of rats, it should be possible to explore the usefulness of proposed therapeutic regimens in the experimental animal without jeopardizing the course of human infants who might be successfully treated with exchange transfusion pending the discovery of a more satisfactory therapy.


Sign in / Sign up

Export Citation Format

Share Document