north atlantic area
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Pedro Bolgiani ◽  
Carlos Calvo-Sancho ◽  
Javier Díaz-Fernández ◽  
Lara Quitián-Hernández ◽  
Mariano Sastre ◽  
...  

Abstract ERA5 represents the state of the art for atmospheric reanalyses and is widely used in meteorological and climatological research. In this work, this dataset is evaluated using the wind kinetic energy spectrum. Seasonal climatologies are generated for 30º latitudinal bands in the Northern Hemisphere (periodic domain) and over the North Atlantic area (limited-area domain). The spectra are also assessed to determine the effective resolution of the reanalysis. The results present notable differences between the latitudinal domains, indicating that ERA5 is properly capturing the synoptic conditions. The seasonal variability is adequate too, being winter the most energetic, and summer the least energetic season. The limited area domain results introduce a larger energy density and range. Despite the good results for the synoptic scales, the reanalysis' spectra are not able to properly reproduce the dissipation rates at mesoscale. This is a source of uncertainties which needs to be taken into account when using the dataset. Finally, a cyclone tropical transition is presented as a case study. The spectrum generated shows a clear difference in energy density at every wavelength, as expected for a highly-energetic status of the atmosphere.


Almanack ◽  
2020 ◽  
Author(s):  
Luca Codignola

Abstract: In a very transnational fashion, priestly misbehavior is a constant feature in the primary sources dealing with the United States and British North America, including Québec, between 1763 and 1846. Rather than a catalogue of occurrences, this article briefly surveys the three main elements of such misbehavior, namely, illicit sex, immoderate drinking, and excessive avariciousness. It then suggests an interpretative grid where behavioral norms were interpreted differently whenever they were challenged by local conditions, leading to accusations of misbehavior whether these accusations reflected actual wrongdoings or not. Ethnic rivalries, different institutional traditions, conflicting political choices, and Protestant competition are the most likely candidates to populate such a large framework.


Author(s):  
Morten Bjerager ◽  
Stefan Piasecki ◽  
Jørgen A. Bojesen-Koefoed

The Geological Survey of Denmark and Greenland (GEUS) successfully drilled the fully cored Blokelv-1 borehole in the central part of the Jameson Land Basin in East Greenland, targeting the Upper Jurassic, rich source-rock interval of the Hareelv Formation. The borehole achieved 100% core recovery from 1.72 m to a total depth of 233.8 m; the recovered Hareelv Formation section consists of interlayered black, laminated organic-rich mudstones, massive sandstones and heterolithic sandstone–mudstone intervals of the Katedralen Member, and amalgamated massive sandstones of the Sjællandselv Member. The core is of very high quality and has been subjected to an extensive sampling and analytical programme focused particularly on petroleum geological aspects, as presented in the following eight papers in this volume. This bulletin describes an important, previously poorly documented member of the ‘Kimmeridge Clay’ family of prolific petroleum source rocks in the North Atlantic area.


Author(s):  
A. Rute Bento ◽  
Marta Gonçalves ◽  
Ricardo Campos ◽  
C. Guedes Soares

The performance of two operational forecasting systems implemented for the North Atlantic area is compared. One forecast system runs the WAM model and the other using the WaveWatchIII model, both driven by GFS wind fields and with the same resolutions for time and space. The GFS wind fields used to drive the models have a spatial resolution of 0.5° by 0.5° and a time resolution of 3h. Regarding the geographical grids implemented, they cover the North Atlantic from the longitude of 90° West to 33° East and from the latitude of 80° North to 2° South, with a fine grid resolution of 0.5 by 0.5 degrees. The wave spectrum is discretized using 30 frequencies, being the lowest frequency equal to 0.0418 Hz, and 36 directions. A 4-days warm up was implemented and a 4-days forecast was calculated. In general both models performed well, as forecasting systems, presenting the same behavior and magnitude of values, when compared to the in-situ measurements.


2014 ◽  
Vol 172 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Marian Ivan ◽  
Daniela Veronica Ghica ◽  
Andrej Gosar ◽  
Panagiotis Hatzidimitriou ◽  
Rami Hofstetter ◽  
...  

2013 ◽  
Vol 9 (5) ◽  
pp. 2043-2071 ◽  
Author(s):  
M. Magny ◽  
N. Combourieu-Nebout ◽  
J. L. de Beaulieu ◽  
V. Bout-Roumazeilles ◽  
D. Colombaroli ◽  
...  

Abstract. On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.


2013 ◽  
Vol 9 (2) ◽  
pp. 1901-1967 ◽  
Author(s):  
M. Magny ◽  
N. Combourieu Nebout ◽  
J. L. de Beaulieu ◽  
V. Bout-Roumazeilles ◽  
D. Colombaroli ◽  
...  

Abstract. On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the Central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the Central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the Central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the Eastern, but also in the Central and the Western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the Central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started at ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice-sheet disappeared and a prevailing positive NAO-type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease, with additional key seasonal and interhemispherical changes, in insolation. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial time scales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age), and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients).


Sign in / Sign up

Export Citation Format

Share Document