stratified regime
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
William Luna Salgado ◽  
Luis Eduardo Barreira Brandão

In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contaminations. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNP-X code, measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%.


2019 ◽  
Vol 77 (1) ◽  
pp. 243-266
Author(s):  
A.E. Gargett

This study examines a simple 6-box model of a single pole-to-pole ocean basin. Each of a northern "polar gyre," a southern "polar gyre," and an "equatorial gyre," consisting of north and south subtropical gyres plus the equatorial region, is represented by two boxes: a surface box receiving constant fluxes of both temperature (heat) and salt (freshwater) and a deep box. The model includes four dominant processes: surface flux forcing, horizontal meridional advection driven by Southern Ocean winds, horizontal eddy diffusion at gyre boundaries, and convection, as well as the process of vertical diffusion by small-scale processes. Provided that heat loss from the northern polar gyre is sufficiently larger than that from the southern polar gyre, a steady-state Atlantic Meridional Overturning Circulation (AMOC)-like system, i. e., one with sinking in the north polar gyre and upwelling in a weakly stratified southern polar gyre, is obtained at present values of RF ≡ βFS / αFT, the ratio of surface forcing by fluxes of temperature (T ) and salinity (S ) in the equatorial gyre. Despite the fact that vertical diffusive fluxes are much smaller than those associated with all the other processes, it is shown that implementation in this model of a simple water mass–based representation of different vertical diffusivities for T and S, the two water properties that, with pressure, determine the density of seawater, can lead to profound change in the steady-state modes of the system. With equal diffusivities, the AMOC-like mode with north polar convection shifts abruptly to a mode with equatorial convection at sufficiently large values of RF. With unequal diffusivities, this mode boundary is replaced by an intermediate region of RF values in which all three gyres are stratified. The existence and extent of this stratified regime is shown to result predominantly from the differences between vertical turbulent diffusivities of T and S in the "salt fingering" equatorial gyre. Existence of a stratified regime at values of RF somewhat larger that present implies a tendency towards stable stratification throughout the oceans if, under climate change, the equatorial diffusivity difference were to increase as a result of water mass changes in the subtropical gyres and/or an increase in RF as a result of increased atmospheric freshwater fluxes and/or decreased heat fluxes. This tendency towards an everywhere-stratified ocean is independent of that expected from increased freshwater addition to surface polar oceans due to ice melt.


2019 ◽  
Vol 286 ◽  
pp. 07007
Author(s):  
M. Echchadli

The onset of convection in two superimposed miscible fluid layers is investigated in the configuration of a geometric Hele-Shaw cell using linear stability analysis. The two fluids have different densities. We neglect the surface tension and chemical diffusion at the interface which is assumed of small amplitude. We consider only the asymptotic case, where the Prandtl number’s order is of the order of unity or larger than unity. We show, in the Hele-Shaw configuration, which can simulate convection in porous media, that the onset of convection can be either stationary or oscillatory depending on the Buoyancy number, B (the ratio of the stabilizing chemical density anomaly to the destabilizing thermal density anomaly), which depends on the viscosity and layer height ratios. When the buoyancy number is lower than a critical value, Bc, oscillating convection occurs in the whole cell height, however beyond Bc, the stratified regime develops without deformation of the interface and convection occurs separately in each layer. In this paper, the transition from oscillatory regime to stratified regime is visualised by using the streamlines at the onset of convection


2015 ◽  
Vol 12 (15) ◽  
pp. 12543-12610
Author(s):  
F. Große ◽  
N. Greenwood ◽  
M. Kreus ◽  
H. J. Lenhart ◽  
D. Machoczek ◽  
...  

Abstract. The problem of low oxygen conditions, often referred to as hypoxia, occurs regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen. However, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for hypoxia, but that the complex interaction between hydrodynamics and the biological processes drives its development. In this study we use the ecosystem model HAMSOM-ECOHAM5 to provide a general characteristic of the different North Sea oxygen regimes, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics below the thermocline and in the bottom layer. We show that the North Sea can be subdivided into three different regimes in terms of oxygen dynamics: (1) a highly productive, non-stratified coastal regime, (2) a productive, seasonally stratified regime with a small sub-thermocline volume, and (3) a productive, seasonally stratified regime with a large sub-thermocline volume, with regime 2 being highly susceptible to hypoxic conditions. Our analysis of the different processes driving the oxygen development reveals that inter-annual variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. In addition, we show that benthic bacteria represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.


Sign in / Sign up

Export Citation Format

Share Document