scholarly journals Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62

2020 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

SummaryThe universally conserved Sec61/SecY channel mediates transport of many newly synthesized polypeptides across membranes, an essential step in protein secretion and membrane protein integration1-5. The channel has two gating mechanisms—a lipid-facing lateral gate, through which hydrophobic signal sequences or transmembrane helices (TMs) are released into the membrane, and a vertical gate, called the plug, which regulates the water-filled pore required for translocation of hydrophilic polypeptide segments6. Currently, how these gates are controlled and how they regulate the translocation process remain poorly understood. Here, by analyzing cryo-electron microscopy (cryo-EM) structures of several variants of the eukaryotic post-translational translocation complex Sec61-Sec62-Sec63, we reveal discrete gating steps of Sec61 and the mechanism by which Sec62 and Sec63 induce these gating events. We show that Sec62 forms a V-shaped structure in front of the lateral gate to fully open both gates of Sec61. Without Sec62, the lateral gate opening narrows, and the vertical pore becomes closed by the plug, rendering the channel inactive. We further show that the lateral gate is opened first by interactions between Sec61 and Sec63 in both cytosolic and luminal domains, a simultaneous disruption of which fully closes the channel. Our study defines the function of Sec62 and illuminates how Sec63 and Sec62 work together in a hierarchical manner to activate the Sec61 channel for post-translational translocation.

Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. 84-87 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo–electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61’s lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008855
Author(s):  
Pratiti Bhadra ◽  
Lalitha Yadhanapudi ◽  
Karin Römisch ◽  
Volkhard Helms

The Sec complex catalyzes the translocation of proteins of the secretory pathway into the endoplasmic reticulum and the integration of membrane proteins into the endoplasmic reticulum membrane. Some substrate peptides require the presence and involvement of accessory proteins such as Sec63. Recently, a structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins was determined by cryo-electron microscopy (cryo-EM). Here, we show by co-precipitation that the accessory membrane protein Sec62 is not required for formation of stable Sec63-Sec61 contacts. Molecular dynamics simulations started from the cryo-EM conformation of Sec61 bound to Sec63 and of unbound Sec61 revealed how Sec63 affects the conformation of Sec61 lateral gate, plug, pore region and pore ring diameter via three intermolecular contact regions. Molecular docking of SRP-dependent vs. SRP-independent peptide chains into the Sec61 channel showed that the pore regions affected by presence/absence of Sec63 play a crucial role in positioning the signal anchors of SRP-dependent substrates nearby the lateral gate.


2021 ◽  
Author(s):  
Zhen Wang ◽  
Fengying Fan ◽  
Lili Dong ◽  
Qingxia Wang ◽  
Yue Zhou ◽  
...  

TACAN is not a mechanosensitive ion channel but significantly linked to the mechanical hyperalgesia. In this study, we show that the human TACAN is a homodimer with each monomer consisting of a body, a spring and a blade domains. The body domain contains six transmembrane helices that forms an independent channel. The spring domain adapts a loop-helix-loop configuration with the helix running within and parallel to the membrane. The blade domain is composed of two cytoplasmic helices. In addition, we found that all the helices of the body and the spring domains are specifically associated with membrane lipids. Particularly, a lipid core, residing within a cavity formed by the two body and spring domains, contacts with the helices from the body and spring domains and extends to reach two symmetrically arranged lipid clusters. These results extremely imply that the membrane lipids coordinate with the membrane-embedded protein to sense and transduce the mechanic signal.


2020 ◽  
Author(s):  
Aaron J. O. Lewis ◽  
Ramanujan S. Hegde

AbstractCells use transporters to move protein across membranes, but the most ancient transporters’ origins are unknown. Here, we analyse the protein-conducting channel SecY and deduce a plausible path to its evolution. We find that each of its pseudosymmetric halves consists of a three-helix bundle interrupted by a two-helix hairpin. Unexpectedly, we identify this same motif in the YidC family of membrane protein biogenesis factors, which is similarly ancient as SecY. In YidC, the two-helix hairpin faces the cytosol and facilitates substrate delivery, whereas in SecY it forms the substratebinding transmembrane helices of the lateral gate. We propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. Archaeal and eukaryotic YidC family members have repurposed this interface to heterodimerise with conserved partners. Unification of the two ancient membrane protein biogenesis factors reconstructs a key step in the evolution of cells.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew L MacKinnon ◽  
Ville O Paavilainen ◽  
Ajay Sharma ◽  
Ramanujan S Hegde ◽  
Jack Taunton

Membrane protein biogenesis requires the coordinated movement of hydrophobic transmembrane domains (TMD) from the cytosolic vestibule of the Sec61 channel into the lipid bilayer. Molecular insight into TMD integration has been hampered by the difficulty of characterizing intermediates during this intrinsically dynamic process. In this study, we show that cotransin, a substrate-selective Sec61 inhibitor, traps nascent TMDs in the cytosolic vestibule, permitting detailed interrogation of an early pre-integration intermediate. Site-specific crosslinking revealed the pre-integrated TMD docked to Sec61 near the cytosolic tip of the lateral gate. Escape from cotransin-arrest depends not only on cotransin concentration, but also on the biophysical properties of the TMD. Genetic selection of cotransin-resistant cancer cells uncovered multiple mutations clustered near the lumenal plug of Sec61α, thus revealing cotransin’s likely site of action. Our results suggest that TMD/lateral gate interactions facilitate TMD transfer into the membrane, a process that is allosterically modulated by cotransin binding to the plug.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Author(s):  
John M. Murray ◽  
Rob Ward

The eukaryotic flagellum is constructed from 11 parallel tubular elements arranged as 9 peripheral fibers (doublet microtubules) and 2 central fibers (singlet microtubules). The primary motion generating component has been found to be arranged as axially periodic “arms” bridging the adjacent doublets. The dynein, comprising the arms, has been isolated and characterized from several different cilia and flagella. Various radial and azimuthal cross-links stabilize the axially aligned microtubules, and probably play some role in controlling the form of the flagella beat cycle.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


Sign in / Sign up

Export Citation Format

Share Document