spontaneous postsynaptic currents
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 15 ◽  
Author(s):  
Francesca Zummo ◽  
Pietro Esposito ◽  
Huilei Hou ◽  
Cecilia Wetzl ◽  
Gemma Rius ◽  
...  

In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.


2020 ◽  
Vol 107 (1) ◽  
pp. 18-29
Author(s):  
M Kourosh-Arami ◽  
S Hajizadeh

AbstractIntroductionDuring mammalian brain development, neural activity leads to maturation of glutamatergic innervations to locus coeruleus. In this study, fast excitatory postsynaptic currents mediated by N-methyl-d-aspartate (NMDA) receptors were evaluated to investigate the maturation of excitatory postsynaptic currents in locus coeruleus (LC) neurons.MethodsNMDA receptor-mediated synaptic currents in LC neurons were evaluated using whole-cell voltage-clamp recording during the primary postnatal weeks. This technique was used to calculate the optimum holding potential for NMDA receptor-mediated currents and the best frequency for detecting spontaneous excitatory postsynaptic currents (sEPSC).ResultsThe optimum holding potential for detecting NMDA receptor-mediated currents was + 40 to + 50 mV in LC neurons. The frequency, amplitude, rise time, and decay time constant of synaptic responses depended on the age of the animal and increased during postnatal maturation.ConclusionThese findings suggest that most nascent glutamatergic synapses express functional NMDA receptors in the postnatal coerulear neurons, and that the activities of the neurons in this region demonstrate an age-dependent variation.


2017 ◽  
Vol 29 (6) ◽  
pp. 1231 ◽  
Author(s):  
Pravin Bhattarai ◽  
Janardhan P. Bhattarai ◽  
Min Sun Kim ◽  
Seong Kyu Han

Vitamin D is a versatile signalling molecule that plays a critical role in calcium homeostasis. There are several studies showing the genomic action of vitamin D in the control of reproduction; however, the quick non-genomic action of vitamin D at the hypothalamic level is not well understood. Therefore, to investigate the effect of vitamin D on juvenile gonadotrophin-releasing hormone (GnRH) neurons, excitatory neurotransmitter receptor agonists N-methyl-D-aspartate (NMDA, 30 μM) and kainate (10 μM) were applied in the absence or in the presence of vitamin D3 (VitaD3, 10 nM). The NMDA-mediated responses were decreased by VitaD3 in the absence and in the presence of tetrodotoxin (TTX), a sodium-channel blocker, with the mean relative inward current being 0.56 ± 0.07 and 0.66 ± 0.07 (P < 0.05), respectively. In addition, VitaD3 induced a decrease in the frequency of gamma-aminobutyric acid mediated (GABAergic) spontaneous postsynaptic currents and spontaneous postsynaptic currents induced by NMDA application with a mean relative frequency of 0.595 ± 0.07 and 0.56 ± 0.09, respectively. Further, VitaD3 decreased the kainate-induced inward currents in the absence and in the presence of TTX with a relative inward current of 0.64 ± 0.06 and 0.68 ± 0.06, respectively (P < 0.05). These results suggest that VitaD3 has a non-genomic action and partially inhibits the NMDA and kainate receptor-mediated actions of GnRH neurons, suggesting that VitaD3 may regulate the hypothalamic–pituitary–gonadal (HPG) axis at the time of pubertal development.


2005 ◽  
Vol 93 (4) ◽  
pp. 2127-2141 ◽  
Author(s):  
Frédéric Brocard ◽  
Cédric Bardy ◽  
Réjean Dubuc

Substance P initiates locomotion when injected in the brain stem of mammals. This study examined the possible role of this peptide on the supraspinal locomotor command system in lampreys. Substance P was bath applied or locally injected into an in vitro isolated brain stem, and the effects of the drug were examined on reticulospinal cells and on the occurrence of swimming in a semi-intact preparation. Bath applications of substance P induced sustained depolarizations occurring rhythmically in intracellularly recorded reticulospinal cells. Spiking activity was superimposed on the depolarizations and swimming was induced. The sustained depolarizations were abolished by tetrodotoxin, and substance P did not affect the membrane resistance of reticulospinal cells nor their firing properties, suggesting that it did not directly effect reticulospinal cells. To establish where the effects were exerted, successive lesions of the brain stem were made as well as local applications of the drug in the brain stem. Removing the mesencephalon abolished the sustained depolarizations, whereas large ejections of the drug in the mesencephalon excited reticulospinal cells and elicited bouts of swimming. More local injections into the mesencephalic locomotor region (MLR) also elicited swimming. After an injection of substance P, the current threshold needed to induce locomotion by MLR stimulation was decreased, and the size of the postsynaptic responses of reticulospinal cells to MLR stimulation was increased. Substance P also reduced the frequency of miniature spontaneous postsynaptic currents in reticulospinal cells. Taken together, these results suggest that substance P plays a neuromodulatory role on the brain stem locomotor networks of lampreys.


Sign in / Sign up

Export Citation Format

Share Document