scholarly journals Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition

2021 ◽  
Vol 118 (51) ◽  
pp. e2112651118
Author(s):  
Hannah Ochner ◽  
Sven Szilagyi ◽  
Sabine Abb ◽  
Joseph Gault ◽  
Carol V. Robinson ◽  
...  

Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography’s (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase–related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.

1999 ◽  
Vol 198-199 ◽  
pp. 731-733 ◽  
Author(s):  
D.E Joyce ◽  
N.D Telling ◽  
J.A Van den Berg ◽  
D.G Lord ◽  
P.J Grundy

2004 ◽  
Vol 263 (1-4) ◽  
pp. 143-147
Author(s):  
Lifeng Liu ◽  
Nuofu Chen ◽  
Fuqiang Zhang ◽  
Chenlong Chen ◽  
Yanli Li ◽  
...  

1998 ◽  
Vol 13 (8) ◽  
pp. 2315-2320 ◽  
Author(s):  
Y. P. Guo ◽  
K. L. Lam ◽  
K. M. Lui ◽  
R. W. M. Kwok ◽  
K. C. Hui

Ion beam deposition provides an additional control of ion beam energy over the chemical vapor deposition methods. We have used a low energy ion beam of hydrogen and carbon to deposit carbon films on Si(100) wafers. We found that graphitic films, amorphous carbon films, and oriented diamond microcrystallites could be obtained separatedly at different ion beam energies. The mechanism of the formation of the oriented diamond microcrystallites was suggested to include three components: strain release after ion bombardment, hydrogen passivation of sp3 carbon, and hydrogen etching. Such a process can be extended to the heteroepitaxial growth of diamond films.


1986 ◽  
Vol 74 ◽  
Author(s):  
B. R. Appleton ◽  
R. A. Zuhr ◽  
T. S. Noggle ◽  
N. Herbots ◽  
S. J. Pennycook

AbstractThe technique of ion beam deposition (IBD) is utilized to investigate low-energy, ion-induced damage on Si and Ge; to study reactive ion cleaning of Si and Ge; to fabricate amorphous isotopic heterostructures; and to fabricate and study the low-temperature epitaxial deposition of 74Ge on Ge(100), 30Si on Si(100), and 74Ge on Si(100). The techniques of ion scattering/channeling and cross-sectional TEM are combined to characterize the deposits.


1995 ◽  
Vol 13 (6) ◽  
pp. 2836-2842 ◽  
Author(s):  
Y.‐W. Kim ◽  
I. Petrov ◽  
H. Ito ◽  
J. E. Greene

1999 ◽  
Vol 581 ◽  
Author(s):  
X. T. Zhou ◽  
H. Y. Peng ◽  
N. G. Shang ◽  
N. Wang ◽  
I. Bello ◽  
...  

ABSTRACTComposite nanowires with typical diameters of 30-100nm, which consisted of Si, β-SiC, amorphous carbon were converted from Si nanowires by ion beam deposition. The Si nanorods were exposed to broad low energy ion beams. The low energy hydrocarbon, argon and hydrogen ions, generated in a Kaufman ion source, reacted with Si nanowires and formed the composite nanowires. It has been assumed that the reaction pathway to form the composite nanowires were driven by both thermal diffusion and kinetic energic of interacting particles.


Sign in / Sign up

Export Citation Format

Share Document