crop genome
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingxiao Zhang ◽  
Qiurong Ren ◽  
Xu Tang ◽  
Shishi Liu ◽  
Aimee A. Malzahn ◽  
...  

AbstractCRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis. This study greatly expands the targeting scope of Cas12a for crop genome engineering.





2020 ◽  
Vol 8 (3) ◽  
pp. 379-383
Author(s):  
Chuanxiao Xie ◽  
Yunbi Xu ◽  
Jianmin Wan


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Taj Arndell ◽  
Niharika Sharma ◽  
Peter Langridge ◽  
Ute Baumann ◽  
Nathan S. Watson-Haigh ◽  
...  

Abstract Background The CRISPR-Cas9 system is a powerful and versatile tool for crop genome editing. However, achieving highly efficient and specific editing in polyploid species can be a challenge. The efficiency and specificity of the CRISPR-Cas9 system depends critically on the gRNA used. Here, we assessed the activities and specificities of seven gRNAs targeting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in hexaploid wheat protoplasts. EPSPS is the biological target of the widely used herbicide glyphosate. Results The seven gRNAs differed substantially in their on-target activities, with mean indel frequencies ranging from 0% to approximately 20%. There was no obvious correlation between experimentally determined and in silico predicted on-target gRNA activity. The presence of a single mismatch within the seed region of the guide sequence greatly reduced but did not abolish gRNA activity, whereas the presence of an additional mismatch, or the absence of a PAM, all but abolished gRNA activity. Large insertions (≥20 bp) of DNA vector-derived sequence were detected at frequencies up to 8.5% of total indels. One of the gRNAs exhibited several properties that make it potentially suitable for the development of non-transgenic glyphosate resistant wheat. Conclusions We have established a rapid and reliable method for gRNA validation in hexaploid wheat protoplasts. The method can be used to identify gRNAs that have favourable properties. Our approach is particularly suited to polyploid species, but should be applicable to any plant species amenable to protoplast transformation.



2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Joe Morrissey ◽  
J. Conrad Stack ◽  
Rebecca Valls ◽  
Juan Carlos Motamayor
Keyword(s):  
Low Cost ◽  


2019 ◽  
Vol 23 (1) ◽  
pp. 29-37 ◽  
Author(s):  
A. M. Korotkova ◽  
S. V. Gerasimova ◽  
E. K. Khlestkina

With the advent of the new genome editing tool of target-specifically customizable endonucleases, a huge variety of novel opportunities have become feasible. The crop improvement is one of the main applications of genome editing in plant science and plant biotechnology. The amount of publications referring to genome editing and CRISPR/Cas system based molecular tools application in crops is permanently growing. The aim of this study is the systematization and cataloging of these data. Earlier we published the first catalog of targeted crop genome modifications as of February 10, 2017. The current review is an update of the catalog; it covers research papers on crop genome modifications from February 10, 2017 to August 17, 2018, found by searching 47 crop names in the Scopus database. Over one year and a half, 377 articles mentioning CRISPR/Cas and crop names have been published, of which 131 articles describe an experimental application of this tool for editing 193 genes in 19 crops, including rice with the largest number of genes modified (109 genes). Editing 50 of 193 genes was aimed at crop improvement. The catalog presented here includes these 50 genes, specifying the cultivars, each gene and gene product function, modification type and delivery method used. The current full list of genes modified with CRISPR/Cas with the aim of crop improvement is 81 in 16 crops (for 5 years from August 2013 to August 2018). In this paper, we also summarize data on different modifications types in different crops and provide a brief review of some novel methods and approaches that have appeared in crop genome editing research over the reviewed period. Taken together, these data provide a clear view on current progress in crop genome modifications and traits improvement using CRISPR/Cas based genome editing technology.



2019 ◽  
Vol 39 (3) ◽  
pp. 321-336 ◽  
Author(s):  
Aili Bao ◽  
David J. Burritt ◽  
Haifeng Chen ◽  
Xinan Zhou ◽  
Dong Cao ◽  
...  
Keyword(s):  


2019 ◽  
Vol 49 (2) ◽  
pp. 179-190
Author(s):  
DongQiao LI ◽  
YanPing YANG






Sign in / Sign up

Export Citation Format

Share Document