scholarly journals Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingxiao Zhang ◽  
Qiurong Ren ◽  
Xu Tang ◽  
Shishi Liu ◽  
Aimee A. Malzahn ◽  
...  

AbstractCRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis. This study greatly expands the targeting scope of Cas12a for crop genome engineering.

2020 ◽  
Author(s):  
Youngbin Oh ◽  
Hyeonjin Kim ◽  
Bora Lee ◽  
Sang-Gyu Kim

Abstract BackgroundThe Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome.ResultsWe introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning annealed products of two oligonucleotides harboring target-binding sequence between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites.ConclusionsThis multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background: The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome.Results: We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites.Conclusions: This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


2018 ◽  
Author(s):  
Florian Jupe ◽  
Todd P. Michael ◽  
Angeline C. Rivkin ◽  
Mark Zander ◽  
S. Timothy Motley ◽  
...  

AbstractOver the last 35 years the soil bacterium Agrobacterium tumefaciens has been the workhorse tool for plant genome engineering. Replacement of native tumor-inducing (Ti) plasmid elements with customizable cassettes enabled insertion of a sequence of interest called Transfer DNA (T-DNA) into any plant genome. Although these T-DNA transfer mechanisms are well understood, detailed understanding of structure and epigenomic status of insertion events was limited by current technologies. To fill this gap, we analyzed transgenic Arabidopsis thaliana lines from three widely used collections (SALK, SAIL and WISC) with two single molecule technologies, optical genome mapping and nanopore sequencing. Optical maps for four randomly selected T-DNA lines revealed between one and seven insertions/rearrangements, and for the first time the actual length of individual transgene insertions from 27 to 236 kilobases. De novo nanopore sequencing-based genome assemblies for two segregating lines resolved T-DNA structures up to 36 kb into the insertions and revealed large-scale T-DNA associated translocations and exchange of chromosome arm ends. The multiple internally rearranged nature of T-DNA arrays made full assembly impossible, even with long nanopore reads. For the current TAIR10 reference genome, nanopore contigs corrected 83% of non-centromeric misassemblies. This unprecedented nucleotide-level definition of T-DNA insertions enabled the mapping of epigenome data. We identify variable small RNA transgene targeting and DNA methylation. SALK_059379 T-DNA insertions were enriched for 24nt siRNAs and contained dense cytosine DNA methylation. Transgene silencing via the RNA-directed DNA methylation pathway was confirmed by in planta assays. In contrast, SAIL_232 T-DNA insertions are predominantly targeted by 21/22nt siRNAs, with DNA methylation and silencing limited to a reporter, but not the resistance gene. With the emergence of genome editing technologies that rely on Agrobacterium for gene delivery, this study provides new insights into the structural impact of engineering plant genomes and demonstrates the utility of state-of-the-art long-range sequencing technologies to rapidly identify unanticipated genomic changes.


Science ◽  
2019 ◽  
Vol 365 (6456) ◽  
pp. 922-926 ◽  
Author(s):  
Kaihang Wang ◽  
Daniel de la Torre ◽  
Wesley E. Robertson ◽  
Jason W. Chin

The design and creation of synthetic genomes provide a powerful approach to understanding and engineering biology. However, it is often limited by the paucity of methods for precise genome manipulation. Here, we demonstrate the programmed fission of the Escherichia coli genome into diverse pairs of synthetic chromosomes and the programmed fusion of synthetic chromosomes to generate genomes with user-defined inversions and translocations. We further combine genome fission, chromosome transplant, and chromosome fusion to assemble genomic regions from different strains into a single genome. Thus, we program the scarless assembly of new genomes with nucleotide precision, a key step in the convergent synthesis of genomes from diverse progenitors. This work provides a set of precise, rapid, large-scale (megabase) genome-engineering operations for creating diverse synthetic genomes.


2021 ◽  
Vol 22 (24) ◽  
pp. 13301
Author(s):  
Dan Zhu ◽  
Junyi Wang ◽  
Di Yang ◽  
Jianzhong Xi ◽  
Juan Li

CRISPR/Cas12a (formerly Cpf1), an RNA-guided endonuclease of the Class II Type V-A CRISPR system, provides a promising tool for genome engineering. Over 10 Cas12a orthologues have been identified and employed for gene editing in human cells. However, the functional diversity among emerging Cas12a orthologues remains poorly explored. Here, we report a high-throughput comparative profiling of editing activities across 16 Cas12a orthologues in human cells by constructing genome-integrated, self-cleaving, paired crRNA–target libraries containing >40,000 guide RNAs. Three Cas12a candidates exhibited promising potential owing to their compact structures and editing efficiency comparable with those of AsCas12a and LbCas12a, which are well characterized. We generated three arginine substitution variants (3Rv) via structure-guided protein engineering: BsCas12a-3Rv (K155R/N512R/K518R), PrCas12a-3Rv (E162R/N519R/K525R), and Mb3Cas12a-3Rv (D180R/N581R/K587R). All three Cas12a variants showed enhanced editing activities and expanded targeting ranges (NTTV, NTCV, and TRTV) compared with the wild-type Cas12a effectors. The base preference analysis among the three Cas12a variants revealed that PrCas12a-3Rv shows the highest activity at target sites with canonical PAM TTTV and non-canonical PAM TTCV, while Mb3Cas12a-3Rv exhibits recognition features distinct from the others by accommodating for more nucleotide A at position −3 for PAM TATV and at position −4 for PAM ATCV. Thus, the expanded Cas12a toolbox and an improved understanding of Cas12a activities should facilitate their use in genome engineering.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome. Results We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites. Conclusions This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome. Results We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites. Conclusions This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


Author(s):  
gancheng wang ◽  
dan zhu ◽  
juan li ◽  
junyi wang ◽  
jianzhong xi

Background: CRISPR-cpf1 is a single RNA-guided endonuclease system, becoming a promising tool in both prokaryotic and eukaryotic genome engineering. The editing efficiency of Cpf1 based engineering still requires improvements. However, limited information regarding the relationship between guide RNA sequence and on-target activity is available. To address these challenges, we developed a screening platform based on the association of Acidaminococcus sp. Cpf1(AsCpf1) DNA cleavage with cellular lethality. Major results: In total, we measured the activities of 12,544 guide RNAs, and observed a substantial variation of the editing efficiency depending on the design of the sequence. Based on this large-scale dataset, we designed and implemented a comprehensive computational model to predict activities of guide RNAs. Through comparison using simulated and experimental data, our approach outperformed existing algorithms, enabling selection of efficient guide RNAs. Conclusions: We refine on-target design rules and isolate the important sequence features that contribute to DNA cleavage, that is, AH dimers at position1-8 of protospacer promoting Cas12a activity while TK, GB dimer playing an inhibitory role. We validate guide RNA affinities designed by our optimized rules in both E.coli and 293T cells.


2021 ◽  
Vol 7 (11) ◽  
pp. eabd6030
Author(s):  
Isabel Strohkendl ◽  
Fatema A. Saifuddin ◽  
Bryan A. Gibson ◽  
Michael K. Rosen ◽  
Rick Russell ◽  
...  

Genome engineering nucleases must access chromatinized DNA. Here, we investigate how AsCas12a cleaves DNA within human nucleosomes and phase-condensed nucleosome arrays. Using quantitative kinetics approaches, we show that dynamic nucleosome unwrapping regulates target accessibility to Cas12a and determines the extent to which both steps of binding—PAM recognition and R-loop formation—are inhibited by the nucleosome. Relaxing DNA wrapping within the nucleosome by reducing DNA bendability, adding histone modifications, or introducing target-proximal dCas9 enhances DNA cleavage rates over 10-fold. Unexpectedly, Cas12a readily cleaves internucleosomal linker DNA within chromatin-like, phase-separated nucleosome arrays. DNA targeting is reduced only ~5-fold due to neighboring nucleosomes and chromatin compaction. This work explains the observation that on-target cleavage within nucleosomes occurs less often than off-target cleavage within nucleosome-depleted genomic regions in cells. We conclude that nucleosome unwrapping regulates accessibility to CRISPR-Cas nucleases and propose that increasing nucleosome breathing dynamics will improve DNA targeting in eukaryotic cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Oskar Gustafsson ◽  
Julia Rädler ◽  
Samantha Roudi ◽  
Tõnis Lehto ◽  
Mattias Hällbrink ◽  
...  

The toolbox for genetic engineering has quickly evolved from CRISPR/Cas9 to a myriad of different gene editors, each with promising properties and enormous clinical potential. However, a major challenge remains: delivering the CRISPR machinery to the nucleus of recipient cells in a nontoxic and efficient manner. In this article, we repurpose an RNA-delivering cell-penetrating peptide, PepFect14 (PF14), to deliver Cas9 ribonucleoprotein (RNP). The RNP-CPP complex achieved high editing rates, e.g., up to 80% in HEK293T cells, while being active at low nanomolar ranges without any apparent signs of toxicity. The editing efficiency was similar to or better compared to the commercially available reagents RNAiMAX and CRISPRMax. The efficiency was thoroughly evaluated in reporter cells and wild-type cells by restriction enzyme digest and next-generation sequencing. Furthermore, the CPP-Cas9-RNP complexes were demonstrated to withstand storage at different conditions, including freeze-thaw cycles and freeze-drying, without a loss in editing efficiency. This CPP-based delivery strategy complements existing technologies and further opens up new opportunities for Cas9 RNP delivery, which can likely be extended to other gene editors in the future.


Sign in / Sign up

Export Citation Format

Share Document