resistive medium
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Sneha Dey ◽  
◽  
A. Ghorai ◽  

Exploration of dynamics of raindrops is one of the simple yet most complicated mechanical problems. Mass accretion from moist air during the motion of raindrop through resistive medium holds an arbitrary power law equation. Its integral part is the change of shape, terminal motions and terminal solutions, etc. Classical Newtonian formalism is used to formulate a mathematical model of generalized first order differential equation. We have discussed about the terminal velocity of raindrop and its variation with the extensive use of python program and library. It is found that terminal velocity 𝐯𝐓𝐜𝛂𝛃 is achieved within 20 seconds where 𝛂=, 𝛃=(𝟎,𝟏) and 𝐧=𝟎,𝟏,𝟐,𝟑,𝟒,…. Its variations due to mass accretion roughly follows the earlier predicted range 𝐠/𝟕 to 𝐠/𝟑.


Author(s):  
Sneha Dey ◽  
◽  
Dr. A. Ghorai ◽  

The mass accretion of a raindrop in different layers of the atmosphere is not dealt with so far. A comprehensive brief study of the motion of raindrops through the atmosphere (i) without mass accretion, (ii) with mass accretion and (iii) finally pressure variation in the atmosphere with altitude using Bernoulli’s equation is illustrated. Acquirement of mass from moist air is mass accretion and mass accretion during the motion of raindrop through resistive medium holds an arbitrary power-law equation. Bernoulli’s equation when applied to it, the generalized first-order differential equation is reduced to a polynomial equation. Results show a single intersecting point of approximate terminal velocity 1 m/s and mass 10-06 mg as illustrated. Terminal velocity is achieved within 25 sec. There is the approximate exponential growth of terminal velocity. An increase in momentum is due to mass accretion during motion. Various conditions of no mass accretion and mass accretion show the same result while for atmospheric effect using Bernoulli’s equation the first-order differential equation reduces to a polynomial equation.


2021 ◽  
Vol 3 (2) ◽  
pp. 6-17
Author(s):  
D. Leshchenko ◽  
◽  
T. Kozachenko ◽  

The dynamics of rotating rigid bodies is a classical topic of study in mechanics. In the eighteenth and nineteenth centuries, several aspects of a rotating rigid body motion were studied by famous mathematicians as Euler, Jacobi, Poinsot, Lagrange, and Kovalevskya. However, the study of the dynamics of rotating bodies of still important for aplications such as the dynamics of satellite-gyrostat, spacecraft, re-entry vehicles, theory of gyroscopes, modern technology, navigation, space engineering and many other areas. A number of studies are devoted to the dynamics of a rigid body in a resistive medium. The presence of the velocity of proper rotation of the rigid body leads to the apearance of dissipative torques causing the braking of the body rotation. These torques depend on the properties of resistant medium in which the rigid body motions occur, on the body shape, on the properties of the surface of the rigid body and the distribution of mass in the body and on the characters of the rigid body motion. Therefore, the dependence of the resistant torque on the orientation of the rigid body and its angular velocity can de quite complicated and requires consideration of the motion of the medium around the body in the general case. We confine ourselves in this paper to some simple relations that can qualitative describe the resistance to rigid body rotation at small angular velocities and are used in the literature. In setting up the equations of motion of a rigid body moving in viscous medium, we need to consider the nature of the resisting force generated by the motion of the rigid body. The evolution of rotations of a rigid body influenced by dissipative disturbing torques were studied in many papers and books. The problems of motion of a rigid body about fixed point in a resistive medium described by nonlinear dynamic Euler equations. An analytical solution of the problem when the torques of external resistance forces are proportional to the corresponding projections of the angular velocity of the rigid body is obtain in several works. The dependence of the dissipative torque of the resistant forces on the angular velocity vector of rotation of the rigid body is assumed to be linear. We consider dynamics of a rigid body with arbitrary moments of inertia subjected to external torques include small dissipative torques.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 910
Author(s):  
Yousra El Mouine ◽  
Amal El Hamdi ◽  
Moad Morarech ◽  
Ilias Kacimi ◽  
Meryem Touzani ◽  
...  

In many parts of the world, the impact of open landfills on soils, biosphere, and groundwater has become a major concern. These landfills frequently generate pollution plumes, the contours of which can be delineated by non-intrusive geophysical measurements, but in arid environments, the high soils resistivity is usually an obstacle, which results in the low number of studies that have been carried out there. In addition, such prospecting using geophysical techniques do not provide information on the intensity of the processes occurring in the water table. This study was carried out on an uncontrolled landfill in the arid Tadla plain, Morocco’s main agricultural region. A survey based on geo-referenced spontaneous potential measurements was combined with measurements of anoxic conditions (Eh-pH and O2 equilibrating partial pressure) in the groundwater and leachates, in order to highlight a pollution plume and its geometry. The range of spontaneous potential measurement is wide, reaching 155 mV. Ponds of leachate with high electrical conductivity (20 to 40 mS cm−1) form within the landfill, and present very reducing conditions down to sulphate reduction and methanisation. The plume is slowly but continuously supplied with these highly reducing and organic carbon-rich leachates from the landfill. Its direction is towards N-NW, stable throughout the season, and consistent with local knowledge of groundwater flow. The fast flow of the water table suggests pollution over long distances that should be monitored in the future. The results obtained are spatially contrasting and stable, and show that such techniques can be used on a resistive medium of arid environments.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 581-587 ◽  
Author(s):  
Abraham Ortega Contreras ◽  
J. Juan Rosales García ◽  
Leonardo Martínez Jiménez ◽  
Jorge Mario Cruz-Duarte

Abstract This paper presents new solutions for twodimensional projectile motion in a free and resistive medium, obtained within the newly established conformable derivative. For free motion, we obtain analytical solutions and show that the trajectory, height, flight time, optimal angle, and maximum range depend on the order of the conformable derivative, 0 < γ ≤ 1. Likewise, we analyse and simulate the projectile motion in a resistive medium by assuming several scenarios. The obtained trajectories never exceed the ordinary ones, given by γ = 1, unlike results reported in other studies.


Sign in / Sign up

Export Citation Format

Share Document