marker assay
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 114219
Author(s):  
Lara Klischke ◽  
Julia von Ehr ◽  
Fabian Kohls ◽  
Johanna Kampers ◽  
Fabienne Hülse ◽  
...  

Author(s):  
Erik Södersten ◽  
Stefano Ongarello ◽  
Anna Mantsoki ◽  
Romain Wyss ◽  
David H. Persing ◽  
...  

A non-sputum triage test to rule out TB disease is a WHO high-priority diagnostic and a combinatory score based on a 3-gene host-signature has shown promise in discriminating TB from other illnesses. We evaluated the accuracy of an early-prototype cartridge-assay (“Xpert MTB Host Response”, or Xpert-MTB-HR-Prototype) of this 3-gene signature on bio-banked blood-samples from PLHIV against a comprehensive microbiological reference standard (CMRS) and against Xpert® MTB/RIF on first sputum alone. We depict results based on performance targets set by WHO in comparison with a laboratory-based CRP assay. Of 201 patients included, 67 were culture-positive for Mycobacterium tuberculosis. AUC for the Xpert-MTB-HR-Prototype was 0·89 (CI 0·83-0·94) against the CMRS and 0·94 (CI 0·89-0·98) against Xpert MTB/RIF. Considering Xpert-MTB-HR-Prototype as a triage test (at nearest upper value of sensitivity to 90%), specificity was 55·8% (CI 47·2-64·1) compared to the CMRS and 85·9% (CI 79·3-90·7) compared to Xpert MTB/RIF as confirmatory tests. Considering Xpert-MTB-HR-Prototype as a stand-alone diagnostic test, at a specificity near 95%, the test achieved a sensitivity of 65·7% (CI 53·7-75·9) while CRP achieved a sensitivity of only 13·6% (CI 7·3-23·4). In this first accuracy study of a prototype blood-based host-marker assay, we show the possible value of the assay for triage and diagnosis in PLHIV.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 750
Author(s):  
Dong Su Kim ◽  
Won Sik Ham ◽  
Won Sik Jang ◽  
Kang Su Cho ◽  
Young Deuk Choi ◽  
...  

The early detection of renal cell carcinoma (RCC) using tumor markers remains an attractive prospect for the potential to downstage the disease. To validate the scale-up clinical performance of potential tumor markers for RCC (as a single marker and as a composite tumor marker composed of nicotinamide N-methyltransferase (NNMT), L-Plastin (LCP1), and non-metastatic cells 1 protein (NM23A)), the scale-up assay was performed. Patients with RCC from multiple domestic institutes were included in the clinical evaluation for reassessment and improvement of the established triple markers of our product. For the diagnostic performance of the composite markers, the best-split cutoff points of each marker (147 pg/mL for NNMT, 1780 pg/mL for LCP1, and 520 pg/mL for NM23A) were installed. Serum levels of NNMT, LCP1, and NM23A were greatly increased in subjects with RCC (p < 0.0001). In 1042 blind sample tests with control individuals (n = 500) and patients with RCC (n = 542), the diagnostic sensitivity and specificity of the composite three-marker assay were 0.871 and 0.894, respectively, and the resulting AUC (Area under Curve) of ROC (Receiver Operating Characteristic) was 0.917. As a single marker, the diagnostic accuracies of NNMT, LCP1, and NM23A, as estimated by ROC, were 0.833, 0.844, and 0.601, respectively. The composite three-marker assay with NNMT, LCP1, and NM23A is a more improved novel serum marker assay for the early detection of RCC in cases of renal mass or unknown condition. The NNMT, LCP1, and NM23A triple marker assay could be a powerful diagnostic tumor marker assay to screen the early stage of RCC.


2020 ◽  
Author(s):  
Erik Södersten ◽  
Stefano Ongarello ◽  
Anna Mantsoki ◽  
Romain Wyss ◽  
David H. Persing ◽  
...  

AbstractA non-sputum triage test to rule out TB disease is a WHO high-priority diagnostic and a combinatory score based on a 3-gene host-signature has shown promise in discriminating TB from other illnesses. We evaluated the accuracy of an early-prototype cartridge-assay (“Xpert MTB Host Response”, or Xpert-MTB-HR-Prototype) of this 3-gene signature on bio-banked blood-samples from PLHIV against a comprehensive microbiological reference standard (CMRS) and against Xpert® MTB/RIF on first sputum alone. We depict results based on performance targets set by WHO in comparison with a laboratory-based CRP assay. Of 201 patients included, 67 were culture-positive for Mycobacterium tuberculosis. AUC for the Xpert-MTB-HR-Prototype was 0·89 (CI 0·83-0·94) against the CMRS and 0·94 (CI 0·89-0·98) against Xpert MTB/RIF. Considering Xpert-MTB-HR-Prototype as a triage test (at nearest upper value of sensitivity to 90%), specificity was 55·8% (CI 47·2-64·1) compared to the CMRS and 85·9% (CI 79·3-90·7) compared to Xpert MTB/RIF as confirmatory tests. Considering Xpert-MTB-HR-Prototype as a stand-alone diagnostic test, at a specificity near 95%, the test achieved a sensitivity of 65·7% (CI 53·7-75·9) while CRP achieved a sensitivity of only 13·6% (CI 7·3-23·4). In this first accuracy study of a prototype blood-based host-marker assay, we show the possible value of the assay for triage and diagnosis in PLHIV.One Sentence SummaryThis is an accuracy study of a blood-based host-marker assay demonstrating its potential in triage and diagnosis of active tuberculosis (TB) in people living with HIV (PLHIV).


2020 ◽  
Vol 97 (3) ◽  
pp. 289-296
Author(s):  
Gregory L. Elison ◽  
Darren G. Hall ◽  
Richard G. Novy ◽  
Jonathan L. Whitworth

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Sung Hun Kang ◽  
Yong Kyu Lee ◽  
Il Seok Park ◽  
In-Kyu Park ◽  
Seok Min Hong ◽  
...  

The purpose of this study was to investigate the effect of photothermal treatment (PTT) with gold nanoshell (ANS) using a macrophage-mediated delivery system in a head and neck squamous cell carcinoma (HNSCC) cell line. To achieve this, ANS-loaded rat macrophages (ANS-MAs) were prepared via the coculture method with ANS. The human HNSCC (FaDu cell) and macrophage (rat macrophage; NR8383 cell) hybrid spheroid models were generated by the centrifugation method to determine the possibility of using ANS-MAs as a cancer therapy. These ANS-MAs were set into the tumor and macrophage hybrid spheroid model to measure PTT efficacy. Kinetic analysis of the spheroid growth pattern revealed that this PTT process caused a decreasing pattern in the volume of the hybrid model containing ANS-MAs (p<0.001). Comparison with empty macrophages showed harmony between ANS and laser irradiation for the generation of PTT. An annexin V/dead cell marker assay indicated that the PTT-treated hybrid model induced increasing apoptosis and dead cells. Further studies on the toxicity of ANS-MAs are needed to reveal whether it can be considered biocompatible. In summary, the ANS was prepared with a macrophage as the delivery method and protective carrier. The ANS was successfully localized to the macrophages, and their photoabsorption property was stationary. This strategy showed significant growth inhibition of the tumor and macrophage spheroid model under NIR laser irradiation. In vivo toxicology results suggest that ANS-MA is a promising candidate for a biocompatible strategy to overcome the limitations of fabricated nanomaterials. This ANS-MA delivery and PTT strategy may potentially lead to improvements in the quality of life of patients with HNSCC by providing a biocompatible, minimally invasive modality for cancer treatment.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
João Vitor Maldonado dos Santos ◽  
Everton Geraldo Capote Ferreira ◽  
André Luiz de Lima Passianotto ◽  
Bruna Bley Brumer ◽  
Adriana Brombini Dos Santos ◽  
...  

Abstract Background Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. Results We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. Conclusions Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression.


2019 ◽  
Author(s):  
João Vitor Maldonado dos Santos ◽  
Everton Geraldo Capote Ferreira ◽  
André Luiz de Lima Passianotto ◽  
Bruna Bley Brumer ◽  
Adriana Brombini Dos Santos ◽  
...  

Abstract Background Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. Results We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association ( p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R² = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. Conclusions Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression


2019 ◽  
Author(s):  
João Vitor Maldonado dos Santos ◽  
Everton Geraldo Capote Ferreira ◽  
André Luiz de Lima Passianotto ◽  
Bruna Bley Brumer ◽  
Adriana Brombini Dos Santos ◽  
...  

Abstract Background Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous) is an important soybean disease, which has been responsible for severe losses in the past. The main strategy to control this fungus is through the introgression of resistance genes. So far, five main loci have been associated with resistance to Southern stem canker. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers useful in breeding programs. Results We characterized the response to Southern stem canker infection in a panel of 295 accessions from different regions of the world including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped and we identified marker loci associated with Diaporthe aspalathi resistance using GWAS analysis. We identified 19 SNPs associated with Southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a high level of the phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi present inn most of the lines comprising this panel. We also identified in resequenced soybean materials other SNPs in the region identified by GWAS in the same LD block that clearly differentiate resistance and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% of selection efficiency. Conclusions Our results suggest a relevant importance of this locus in SSC resistance in soybean cultivars and accessions from different countries and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select resistance materials against this pathogen and support its introgression.


Sign in / Sign up

Export Citation Format

Share Document