scholarly journals Modeling and Optimization of Manganese Carbonate Precipitation Using Response Surface Methodology and Central Composite Rotatable Design

Author(s):  
Meschack Mukunga Muanda ◽  
Pele Pascal Daniel Omalanga

A sulfate solution containing 1773.965 mg/L Mn2+, 3216.178 mg/L Mg2+ and 566.254 mg/L Ca2+ was used to perform the maximum recovery of manganese and minimum recovery of magnesium. Carbonate precipitation was used due to the better selectivity for manganese over magnesium and other impurities recovery compared to hydroxide precipitation. Four factors were studied: solution pH value, contact time, reaction temperature and sodium carbonate consumption. Analysis of variance (ANOVA) and response surface methodology (RSM) were used to determine the optimum. Under the optimum conditions, the manganese and magnesium recoveries were the highest and the lowest respectively, while the pH, the time, the temperature and the volume of Na2CO3 were the lowest.  The values of the four factors were found as followed: 8.9293, 60.69 min, 77.95°F, and 50.7650 mL respectively. Moreover, the recoveries of manganese and magnesium were 99.9799% and 4.3045% respectively. The results show that optimization using RSM is effective in improving carbonate precipitation of manganese.

2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
I Gusti Ngurah Bagus Pranantha Bistara K ◽  
I Ketut Suter ◽  
Gusti Ayu Kadek Diah Puspawati

The research was conducted to obtain the optimum of ethanol concentration and comparison of material with ethanol to produced beluntas leaves extract that had the highest antioxidant activiy. Response Surface Methodology (RSM) was used for optimization of extraction conditions with experimental design was a Central Composite Design (CCD) in two factors, namely ethanol concentration and comparison of material with ethanol. The results showed that the optimum conditions of beluntas leaves extraction were at ethanol concentration 62.71% and the comparison of material with ethanol 1:10.14. In this condition, the highest antioxidant activity was obtained at 65.80% with IC50, extract yield, total flavonoid content, and total tannin content were 3.87 ppm, 18.20% dry weight extract, 47.05 mg QE/g dry weight extract, and 9.11 mg TAE/g dry weight extract, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1370
Author(s):  
Zhenfeng Lin ◽  
Ziwei Pan ◽  
Yuhao Zhao ◽  
Lin Qian ◽  
Jingtao Shen ◽  
...  

PPy-Fe3O4/Kaolin was prepared with polypyrrole functionalized magnetic Kaolin by a simple, green, and low cost method to improve the agglomeration and low adsorption capacity of Kaolin. PPy-Fe3O4/Kaolin was employed to remove Hg2+ and the results were characterized by various methods. Relevant factors, including solution pH, dosage of adsorbent, concentration (C0), and temperature (T), were optimized by Response Surface Methodology (RSM) and Central Composite Designs (CCD). The optimal results show that the importance for adsorption factors is pH > T > C0 > dosage, and the optimal adsorption conditions of PPy-Fe3O4/Kaolin are pH = 7.2, T = 315 K, C0 = 50 mg/L, dosage of 0.05 g/L, and the capacity is 317.1 mg/g. The adsorption process conforms to the pseudo-second-order and Langmuir models. Dubinin–Radushkevich model shows that adsorption process is spontaneous and endothermic. Moreover, the adsorption of mercury by PPy-Fe3O4/Kaolin was achieved mainly through electrostatic attraction, pore diffusion, and chelation between amino functional groups and Hg2+. PPy-Fe3O4/Kaolin has excellent reproducibility, dispersity, and chemical stability, and it is easy to be separated from solution through an external magnetic field. The experiments show that PPy-Fe3O4/Kaolin is an efficient and economical adsorbent towards mercury.


2014 ◽  
Vol 1073-1076 ◽  
pp. 336-339
Author(s):  
Tian Qi Li ◽  
Hui Wang ◽  
Ya Qi Zhu ◽  
Zhao Yong Bian

Response surface methodology was applied to investigate the optimum degradation conditions of paracetamol using Ag/BiVO4 photocatalysts under the visible light irradiation. Experimental results show that the optimum degradation conditions were: catalyst dosage quantity was 80 mg, Ag-catalyst loading was 5%, and the initial pH value of the solution was 6, respectively. Under this condition, the degradation efficiency of paracetamol was 77.9% within 5 h under the visible light irradiation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Wei ◽  
Dengfei Jie

The production and nature of the biocrude obtained from Spirulina sp. by hydrothermal liquefaction (HTL) technology is focused in this investigation. Our aim is to evaluate the interaction of different factors on the bio-oil production through HTL using microalgae that contains relatively low lipid content and high protein. Optimization of three key parameters—concentration (mass of algae per mass of solvent), reaction temperature, and holding time—was carried out by response surface methodology (RSM). In this work, we used central composite design to conduct the experiment process. Graphical response surface and contour plots were used to locate the optimum point. The final results showed that the optimum concentration, temperature, and holding time were 10.5%, 357°C, and 37 min, respectively. Under the optimum conditions established, yield of the biocrude (41.6 ± 2.2%) was experimentally obtained using the fresh microalgae. This study showed the potential of bio-oil production of Spirulina sp. by HTL technology, but it still needs more improvement of the biocrude for utilization.


2010 ◽  
Vol 7 (1) ◽  
pp. 51
Author(s):  
Yamin Yasin ◽  
Nur Syahirah Abdul Latif ◽  
Abdul Hafiz Abdul Malik

Anionic clay hydrotalcite was used as an adsorbent to remove amido black dye from aqueous solutions. Response surface methodology (RSM) based on a five-level, four-variable Central Composite Rotatable Design (CCRD) was employed to evaluate the interactive effects of various optimization parameters. The parameters were contact time (6-10 hrs), solution pH (4-8), adsorbent dosage (200-600 mg) and dye concentration (50-100 mg/I). Simultaneously increasing contact time, initial concentration and amount of adsorbent dosage increased the quantity of amido black dye removed. The optimum conditions derived via RSM for the reaction were a reaction time of 8.48 hrs, a concentration of 58. 09 mg/I, an adsorbent dosage of 431. 2 4 mg/L and a solution pH of 6.27. The experimental percentage removal was 85.55 % under optimum conditions, which compares well with the maximum predicted value of 87.95 %.


Author(s):  
R. Deepa ◽  
G. Madhu ◽  
Roy M Thomas ◽  
V. Sivanandan Achari

In the present study, the three main process parameters in the Fenton process for the removal of pharmaceutical compound Mefenamic acid from an aqueous solution were optimized using response surface methodology (RSM). Central composite design (CCD) was used for process optimization. The primary and secondary interaction effects of the selected parameters such as H2O2, Fe2+ and pH on the removal of mefenamic acid were examined. A mathematical model for the removal process based on the selected variables was developed. The interaction effect between the chosen parameters shows that the removal of mefenamic acid was enhanced in the acidic pH range at a high concentration of H2O2 and in a medium concentration level of the catalyst Fe2+. The removal efficiency of 81.24% was obtained for mefenamic acid at the optimized condition of variables such as 9.36 mM H2O2, 0.058 mM Fe2+and at a pH value of 2.1.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yamin Yasin ◽  
Maszlin Mohamad ◽  
Faujan B. H. Ahmad

Layered double hydroxide intercalated with tartrate (tartrate-Mg-Al) was used as an adsorbent to remove lead ions from aqueous solutions. The effects of various optimization parameters such as contact time, solution pH, lead ion concentrations, and adsorbent dosage were investigated by the use of Response Surface Methodology (RSM). The Response Surface Methodology (RSM) based on a four-level four-variable Central Composite Rotatable Design (CCRD) was employed to evaluate the interactive effects of the various optimization parameters. The parameters were contact time (6–10 h), solution pH (1–3), adsorbent dosage (0.06–0.1 g), and lead ion concentrations (10–30 mg/L). The percentage of lead ions removal for each of the parameters studied was determined by Inductively Coupled Plasma-Optical Emission Spectrophotometer. Simultaneously by increasing contact time and amount of dosage of tartrate-Mg-Al used the percentage of lead ions removal from aqueous solution will increase; however, the percentage removal decreases with an increase in pH and concentrations of lead ions. The experimental percentage removal recorded under optimum conditions was compared well with the maximum predicted value from the RSM, which suggest that Central Composite Rotatable Design of RSM can be used to study the removal of lead from aqueous solution by the use of tartrate-Mg-Al as an adsorbent.


Food Research ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 232-245
Author(s):  
Noor Eliza M.R. ◽  
Siti Roha A.M. ◽  
Norrizah A.R. ◽  
Adi M.S.

Supercritical carbon dioxide (Sc-CO2) was applied to extract fat and cholesterol from beef floss (BF). A response surface methodology (RSM) based on central composite design (CCD) was employed to optimize the extraction conditions of temperature (30 - 62°C), pressure (7 - 35 MPa), and extraction time (0 - 40 mins). The optimum conditions were estimated to be at 51.0°C and 32.8 MPa for a duration of 32.7 mins. Under such conditions, the percentage of fat and cholesterol reduction plus lightness of Sc-CO2 treated BF (STBF) were 81.12%, 86.17%, and 57.60, respectively. There were no significant differences (p>0.05) between experimental and predicted values, indicating the adequacy of the well-fitting models. Furthermore, the protein and ash content of STBF increased significantly (p<0.05) as a result of the extraction. This study indicated that RSM-CCD can be potentially employed in maximizing the extraction of fat and cholesterol from BF under mild Sc-CO2 conditions.


2010 ◽  
Vol 7 (1) ◽  
pp. 51
Author(s):  
Yamin Yasin ◽  
Nur Syahirah Abdul Latif ◽  
Abdul Hafiz Abdul Malik

Anionic clay hydrotalcite was used as an adsorbent to remove amido black dye from aqueous solutions. Response surface methodology (RSM) based on a jive-level, four-variable Central Composite Rotatable Design (CCRD) was employedto evaluate the interactive effects ofvarious optimization parameters. The parameters were contact time (6-10 hrs), solution pH (4-8), adsorbent dosage (200-600 mg) and dye concentration (50-100 mg//). Simultaneously increasing contact time, initial concentration and amount ofadsorbent dosage increased the quantity ofamido black dye removed. The optimum conditions derived via RSM for the reaction were a reaction time of 8.48 hrs, a concentration of58.09 mg/l, an adsorbent dosage of431.24 mg/L anda solution pHof6.27. The experimental percentage removal was 85.55 % under optimum conditions, which compares well with the maximum predicted value of 87.95 %.


Author(s):  
Nurfadilah Mohammed ◽  
Wan Azlina Ahmad

Response surface methodology (RSM) involving central composite design (CCD) was employed to obtain optimal conditions for Cr(VI) wastewater treatment by Cr (VI) reducing biofilm systems. On the basis of a CCD, RSM was used to determine the effect of initialmetal concentrations (40-100 mgL-1), nutrient supplementations (10-20%) and flowrate (3-6 mLmin-1) on the levels of response, i.e. Cr(VI) reduction efficiency. A set of 20 experimental runs were needed for optimizing of the operating conditions. Quadratic regressionmodels with estimated coefficients were developed to describe the Cr (VI) reduction. Analysis of variance (ANOVA) showed a highcoefficient of determination (R2) value of 0.9941, thus ensuring a satisfactory adjustment of the second-order regression model with theexperimental data. Cr (VI) reduction had significant effect on all the three dependent variables. The experimental results show that Cr(VI)-reducing biofilm systems could effectively reduce Cr (VI), 100% at the optimum conditions of initial metal concentration of 100mgL-1, nutrient supplementation of 20% and flowrate of 3 mLmin-1. The experimental observations were in reasonable agreement withthe modelled values.


Sign in / Sign up

Export Citation Format

Share Document