sarcolemmal integrity
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 1)

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jordan Blondelle ◽  
Valeria Marrocco ◽  
Madison Clark ◽  
Patrick Desmond ◽  
Stephanie Myers ◽  
...  

2017 ◽  
Vol 114 (30) ◽  
pp. E6250-E6259 ◽  
Author(s):  
Ana Maria Manso ◽  
Hideshi Okada ◽  
Francesca M. Sakamoto ◽  
Emily Moreno ◽  
Susan J. Monkley ◽  
...  

Continuous contraction–relaxation cycles of the heart require strong and stable connections of cardiac myocytes (CMs) with the extracellular matrix (ECM) to preserve sarcolemmal integrity. CM attachment to the ECM is mediated by integrin complexes localized at the muscle adhesion sites termed costameres. The ubiquitously expressed cytoskeletal protein talin (Tln) is a component of muscle costameres that links integrins ultimately to the sarcomere. There are two talin genes, Tln1 and Tln2. Here, we tested the function of these two Tln forms in myocardium where Tln2 is the dominant isoform in postnatal CMs. Surprisingly, global deletion of Tln2 in mice caused no structural or functional changes in heart, presumably because CM Tln1 became up-regulated. Tln2 loss increased integrin activation, although levels of the muscle-specific β1D-integrin isoform were reduced by 50%. With this result, we produced mice that had simultaneous loss of both CM Tln1 and Tln2 and found that cardiac dysfunction occurred by 4 wk with 100% mortality by 6 mo. β1D integrin and other costameric proteins were lost from the CMs, and membrane integrity was compromised. Given that integrin protein reduction occurred with Tln loss, rescue of the phenotype was attempted through transgenic integrin overexpression, but this could not restore WT CM integrin levels nor improve heart function. Our results show that CM Tln2 is essential for proper β1D-integrin expression and that Tln1 can substitute for Tln2 in preserving heart function, but that loss of all Tln forms from the heart-muscle cell leads to myocyte instability and a dilated cardiomyopathy.


2013 ◽  
Vol 200 (4) ◽  
pp. 523-536 ◽  
Author(s):  
Davide Randazzo ◽  
Emiliana Giacomello ◽  
Stefania Lorenzini ◽  
Daniela Rossi ◽  
Enrico Pierantozzi ◽  
...  

Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity.


2013 ◽  
Vol 104 (2) ◽  
pp. 146a
Author(s):  
Davide Randazzo ◽  
Emiliana Giacomello ◽  
Daniela Rossi ◽  
Bert Blaauw ◽  
Carlo Reggiani ◽  
...  

2012 ◽  
Vol 113 (5) ◽  
pp. 1189-1198 ◽  
Author(s):  
Arve Jørgensen ◽  
Philip P. Foster ◽  
Ingrid Eftedal ◽  
Ulrik Wisløff ◽  
Gøran Paulsen ◽  
...  

2012 ◽  
Vol 302 (9) ◽  
pp. C1306-C1315 ◽  
Author(s):  
Jeff R. S. Leiter ◽  
Ritika Upadhaya ◽  
Judy E. Anderson

Age-related sarcopenia reduces the size, strength, and function of muscle, and the diameter of muscle fibers. It also disrupts the dystrophin-glycoprotein complex, dislocating nitric oxide synthase 1 (NOS-1) and reducing sarcolemmal integrity. This study of quadriceps muscle in 18-mo-old mice showed that NO-donor treatment with isosorbide dinitrate (I) for 6 wk, in combination with voluntary exercise for 3 wk, increased muscle mass by 25% and stimulated cell proliferation. The resulting fiber hypertrophy was accompanied by a lower ratio of protein:DNA, consistent with myogenic-cell hyperplasia. Treatment enhanced the ratio of NOS-1:β-dystroglycan in correlation with fiber diameter, improved sarcolemmal integrity, and increased vascular density after an increase in vascular endothelial growth factor protein at 3 wk. Results demonstrate that age-related muscle refractoriness to exercise can be overcome with NO-donor treatment. Since activation of muscle stem cells and vascular perfusion are limiting factors in the maintenance, regeneration, and growth of aged muscle, results suggest the feasibility of using NO-donor drugs to combat atrophy and muscle ischemia. Improved function and quality of life from the NO-amplified effects of exercise may be useful in aging and other conditions such as disuse, insulin resistance, or microgravity.


2009 ◽  
Vol 18 (23) ◽  
pp. 4640-4649 ◽  
Author(s):  
P. Miura ◽  
J. V. Chakkalakal ◽  
L. Boudreault ◽  
G. Belanger ◽  
R. L. Hebert ◽  
...  

2003 ◽  
Vol 375 (2) ◽  
pp. 329-337 ◽  
Author(s):  
Yun-Ju CHEN ◽  
Heather J. SPENCE ◽  
Jacqueline M. CAMERON ◽  
Thomas JESS ◽  
Jane L. ILSLEY ◽  
...  

Dystroglycans are essential transmembrane adhesion receptors for laminin. α-Dystroglycan is a highly glycosylated extracellular protein that interacts with laminin in the extracellular matrix and the transmembrane region of β-dystroglycan. β-Dystroglycan, via its cytoplasmic tail, interacts with dystrophin and utrophin and also with the actin cytoskeleton. As a part of the dystrophin–glycoprotein complex of muscles, dystroglycan is also important in maintaining sarcolemmal integrity. Mutations in dystrophin that lead to Duchenne muscular dystrophy also lead to a loss of dystroglycan from the sarcolemma, and chimaeric mice lacking muscle dystroglycan exhibit a severe muscular dystrophy phenotype. Using yeast two-hybrid analysis and biochemical and cell biological studies, we show, in the present study, that the cytoplasmic tail of β-dystroglycan interacts directly with F-actin and, furthermore, that it bundles actin filaments and induces an aberrant actin phenotype when overexpressed in cells.


2000 ◽  
Vol 279 (4) ◽  
pp. C1290-C1294 ◽  
Author(s):  
Gordon S. Lynch ◽  
Jill A. Rafael ◽  
Jeffrey S. Chamberlain ◽  
John A. Faulkner

Muscle fibers of mdx mice that lack dystrophin are more susceptible to contraction-induced injury, particularly when stretched. In contrast, transgenic mdx (tg -mdx) mice, which overexpress dystrophin, show no morphological or functional signs of dystrophy. Permeabilization disrupts the sarcolemma of fibers from muscles of mdx, tg- mdx, and control mice. We tested the null hypothesis stating that, after single stretches of maximally activated single permeabilized fibers, force deficits do not differ among fibers from extensor digitorum longus muscles of mdx, tg -mdx, or control mice. Fibers were maximally activated by Ca2+ (pCa 4.5) and then stretched through strains of 10%, 20%, or 30% of fiber length ( L f) at a velocity of 0.5 L f/s. Immediately after each strain, the force deficits were not different for fibers from each of the three groups of mice. When collated with studies of membrane-intact fibers in whole muscles of mdx, tg -mdx, and control mice, these results indicate that dystrophic symptoms do not arise from factors within myofibrils but, rather, from disruption of the sarcolemmal integrity that normally provides protection from contraction-induced injury.


2000 ◽  
Vol 20 (5) ◽  
pp. 1669-1677 ◽  
Author(s):  
Connie S. Lebakken ◽  
David P. Venzke ◽  
Ronald F. Hrstka ◽  
Christina M. Consolino ◽  
John A. Faulkner ◽  
...  

ABSTRACT Sarcospan is an integral membrane component of the dystrophin-glycoprotein complex (DGC) found at the sarcolemma of striated and smooth muscle. The DGC plays important roles in muscle function and viability as evidenced by defects in components of the DGC, which cause muscular dystrophy. Sarcospan is unique among the components of the complex in that it contains four transmembrane domains with intracellular N- and C-terminal domains and is a member of the tetraspan superfamily of proteins. Sarcospan is tightly linked to the sarcoglycans, and together these proteins form a subcomplex within the DGC. Stable expression of sarcospan at the sarcolemma is dependent upon expression of the sarcoglycans. Here we describe the generation and analysis of mice carrying a null mutation in the Sspngene. Surprisingly, the Sspn-deficient muscle maintains expression of other components of the DGC at the sarcolemma, and no gross histological abnormalities of muscle from the mice are observed. The Sspn-deficient muscle maintains sarcolemmal integrity as determined by serum creatine kinase and Evans blue uptake assays, and the Sspn-deficient muscle maintains normal force and power generation capabilities. These data suggest either that sarcospan is not required for normal DGC function or that theSspn-deficient muscle is compensating for the absence of sarcospan, perhaps by utilizing another protein to carry out its function.


Sign in / Sign up

Export Citation Format

Share Document