translational suppression
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Joshua L C Wong ◽  
Sophia David ◽  
Julia Sanchez-Garrido ◽  
Jia Z Woo ◽  
Wen Wen Low ◽  
...  

Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae (KP), modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. Analysis of large KP genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine to thymine transition at position 25 (25c>t) in ompK36. We show that the 25c>t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates KP in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c>t transition tips the balance towards treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c>t transition mediates an intramolecular mRNA interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.


2021 ◽  
Author(s):  
Akruti Shah ◽  
Rashna Bhandari

Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independent of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localize to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2, and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5’ mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T and the cap binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly.


2021 ◽  
Author(s):  
Daniel R. Sandoval ◽  
Thomas Mandel Clausen ◽  
Chelsea Nora ◽  
Jason A. Magida ◽  
Adam P. Cribbs ◽  
...  

We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone, a compound in clinical trials for anti-fibrotic and anti-inflammatory applications, as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry. We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry. Utilizing analogues of halofuginone and small molecule inhibitors of the PRS, we establish that inhibition of HS presentation and viral replication is dependent on proline tRNA synthesis opposed to PRS activation of the integrated stress response (ISR). Moreover, we provide evidence that these effects are mediated by the depletion of proline tRNAs. In line with this, we find that SARS-CoV-2 polyproteins, as well as several HS proteoglycans, are particularly proline-rich, which may make them vulnerable to halofuginone translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a promising clinical trial candidate for the treatment of COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 491
Author(s):  
Alan Rein

I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that could not have been inferred or anticipated from straightforward sequence information. Building on the Oroszlan lab results, my colleagues and I demonstrated that the zinc fingers in nucleocapsid proteins play a crucial role in genomic RNA encapsidation; that the N-terminal myristylation of the Gag proteins of many retroviruses is important for their association with the plasma membrane before particle assembly is completed; and that gammaretroviruses initially synthesize their Env protein as an inactive precursor and then truncate the cytoplasmic tail of the transmembrane protein, activating Env fusogenicity, during virus maturation. We also elucidated several aspects of the mechanism of translational suppression in pol gene expression in gammaretroviruses; amazingly, this is a fundamentally different mechanism of suppression from that in most other retroviral genera.


Immunobiology ◽  
2021 ◽  
Vol 226 (2) ◽  
pp. 152056
Author(s):  
Sakino Fukatsu ◽  
Hikari Horinouchi ◽  
Shiho Nagata ◽  
Risa Kamei ◽  
Daichi Tanaka ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240498
Author(s):  
Luchezar Karagyozov ◽  
Petar N. Grozdanov ◽  
Frank-D. Böhmer

The signal peptides, present at the N-terminus of many proteins, guide the proteins into cell membranes. In some proteins, the signal peptide is with an extended N-terminal region. Previously, it was demonstrated that the N-terminally extended signal peptide of the human PTPRJ contains a cluster of arginine residues, which attenuates translation. The analysis of the mammalian orthologous sequences revealed that this sequence is highly conserved. The PTPRJ transcripts in placentals, marsupials, and monotremes encode a stretch of 10–14 arginine residues, positioned 11–12 codons downstream of the initiating AUG. The remarkable conservation of the repeated arginine residues in the PTPRJ signal peptides points to their key role. Further, the presence of an arginine cluster in the extended signal peptides of other proteins (E3 ubiquitin-protein ligase, NOTCH3) is noted and indicates a more general importance of this cis-acting mechanism of translational suppression.


2020 ◽  
Author(s):  
Luchezar Karagyozov ◽  
Petar Grozdanov ◽  
Frank-D. Böhmer

AbstractThe signal peptides, present at the N-terminus of many proteins, guide the proteins into cell membranes. In some proteins, the signal peptide contains an extended N-terminal region and a recessed hydrophobic signal sequence. Previously, it was demonstrated that the N-terminally extended signal peptide of the human PTPRJ contains a cluster of arginine residues, which attenuates translation. The analysis of the orthologous sequences revealed that this sequence is highly conserved among mammals. The PTPRJ transcripts in placentals, marsupials, and monotremes encode a stretch of 10 – 14 arginine residues, positioned 11-12 codons downstream of the initiating AUG. The remarkable conservation of the repeated arginine residues in the PTPRJ signal peptides points to their key role. Further, the presence of an arginine cluster in the extended signal peptides of other proteins (E3 ubiquitin-protein ligase, NOTCH3) is noted and indicates a more general importance of this cis-acting mechanism of translational suppression.


Sign in / Sign up

Export Citation Format

Share Document