hydroxyapatite formation
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 31)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Estelle Palierse ◽  
Sylvie Masse ◽  
Guillaume Laurent ◽  
Patrick Le Griel ◽  
Gervaise Mosser ◽  
...  

Plant-derived natural bioactive molecules are of great therapeutic potential but their application in nanomedicine has been so far scarcely studied. This work aimed at comparing two methodologies, i.e. adsorption and in situ incorporation, to prepare hybrid polyphenol/hydroxyapatite nanoparticles. Two flavonoids, baicalin and its aglycone derivative baicalein, and two phenolic acids derived from caffeic acid, rosmarinic and chlorogenic acids, were studied. Adsorption of these polyphenols on pre-formed hydroxyapatite nanoparticles did not modify particles size or shape and loading was less than 10 % (w/w). In contrast, presence of polyphenols during the synthesis of nanoparticles significantly impacted, and sometimes fully inhibited, hydroxyapatite formation, but recovered particles could exhibit higher loadings. Antioxidant properties of the polyphenols were preserved after adsorption but not when incorporated in situ. These results provide fruitful clues for the valorization of natural bioactive molecules in nanomedicine


2021 ◽  
Vol 22 (22) ◽  
pp. 12343
Author(s):  
Alexander L. Danesi ◽  
Dimitra Athanasiadou ◽  
Ahmad Mansouri ◽  
Alina Phen ◽  
Mehrnoosh Neshatian ◽  
...  

Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.


2021 ◽  
Vol 10 (7) ◽  
pp. e57510716920
Author(s):  
Raphael de Oliveira Luzo ◽  
Vinícios Dias de Oliveira ◽  
Marco Antonio da Costa ◽  
Claudinei dos Santos ◽  
José Eduardo Vasconcellos Amarante ◽  
...  

The aim of this work was to obtain porous ceramic parts based on Zirconia stabilized with 5mol.% Yttria (5Y-PSZ), suitable for the infiltration with bioactive glasses, using 3D printed sacrificial polymeric molds. In a first step, honeycomb structured molds were designed with the SolidWorks® software and manufactured by 3D printing using polylactic acid filaments (PLA). These molds were filled with a ceramic mass composed of 5Y-PSZ nanoparticles containing 3wt% polymeric binder and consolidated under pressure of 10MPa and then sintered at 1200 °C-30 min the polymeric molds were consumed. The obtained hexagonal-shaped, porous 5Y-TZP bodies were infiltrated with the bioactive glass 45S5, calcium sodium phosphosilicate, at 1350 °C. The materials were characterized by their relative density, their phase composition by X-ray diffraction analysis, and their microstructure by scanning electron microscopy (SEM-EDS), besides their mechanical properties of hardness and fracture toughness. Pre-sintered 5Y-PSZ substrates exhibit relative density around 75%, and 90% after sintering and Bioglass infiltration. The samples' microstructure is composed of a 5Y-PSZ matrix of sub-micrometric zirconia grains with an average size of 1.0 mm, besides the secondary infiltrated glassy phase homogeneously distributed, with a Ca/P ratio of 1.7, close to the ideal proportion for hydroxyapatite formation. In conclusion, sacrificial molding is an interesting route to obtaining dense Y-PSZ/Bioglass 45S5 composite in a honeycomb format.


2021 ◽  
Vol 118 ◽  
pp. 294-300
Author(s):  
Chen-Hsueh Lin ◽  
Yu-Sheng Chen ◽  
Wei-Lun Huang ◽  
Tzung-Chin Hung ◽  
Ten-Chin Wen

Author(s):  
Sarka Sovova ◽  
Anatolii Abalymov ◽  
Miloslav Pekař ◽  
Andre Skirtach ◽  
Bogdan Parakhonskiy

To develop materials for drug delivery and tissue engineering and to study their efficiency of with respect to ossification, it is necessary to apply physico-chemical and biological analysis. The major...


Sign in / Sign up

Export Citation Format

Share Document