embryonic lungs
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2015 ◽  
Vol 5 (2) ◽  
pp. 382-397 ◽  
Author(s):  
Kaori Ihida-Stansbury ◽  
Juliana Ames ◽  
Mithil Chokshi ◽  
Norman Aiad ◽  
Sonali Sanyal ◽  
...  

2014 ◽  
Vol 306 (1) ◽  
pp. L10-L22 ◽  
Author(s):  
Yan Cai ◽  
Melissa E. Winn ◽  
John K. Zehmer ◽  
William K. Gillette ◽  
Jacek T. Lubkowski ◽  
...  

Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress.


2010 ◽  
Vol 27 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Toko Shinkai ◽  
Masato Shinkai ◽  
Martina A. Pirker ◽  
Sandra Montedonico ◽  
Prem Puri

2005 ◽  
Vol 171 (9) ◽  
pp. 958-965 ◽  
Author(s):  
Hans Michael Haitchi ◽  
Robert M. Powell ◽  
Timothy J. Shaw ◽  
Peter H. Howarth ◽  
Susan J. Wilson ◽  
...  
Keyword(s):  

1999 ◽  
Vol 277 (2) ◽  
pp. L412-L422 ◽  
Author(s):  
Jingsong Zhao ◽  
Patricia J. Sime ◽  
Pablo Bringas ◽  
Jack Gauldie ◽  
David Warburton

Excessive transforming growth factor (TGF)-β signaling has been implicated in pulmonary hypoplasia associated with bronchopulmonary dysplasia, a chronic lung disease of human prematurity featuring pulmonary fibrosis. This implies that inhibitors of TGF-β could be useful therapeutic agents. Because exogenous TGF-β ligands are known to inhibit lung branching morphogenesis and cytodifferentiation in mouse embryonic lungs in ex vivo culture, we examined the capacity of a naturally occurring inhibitor of TGF-β activity, the proteoglycan decorin, to overcome the inhibitory effects of exogenous TGF-β. Intratracheal microinjection of a recombinant adenovirus containing decorin cDNA resulted in overexpression of the exogenous decorin gene in airway epithelium. Although exogenous TGF-β efficiently decreased epithelial lung branching morphogenesis in control cultures, TGF-β-induced inhibition of lung growth was abolished after epithelial transfer of the decorin gene. Additionally, exogenous TGF-β-induced antiproliferative effects as well as the downregulation of surfactant protein C were abrogated by decorin in cultured embryonic lungs. Moreover, lung branching inhibition by TGF-β could be restored by the addition of decorin antisense oligodeoxynucleotides in culture, indicating that decorin is both specifically and directly involved in suppressing TGF-β-mediated negative regulation of lung morphogenesis. Our findings suggest that decorin can antagonize bioactive TGF-β during lung growth and differentiation, establishing the rationale for decorin as a candidate therapeutic approach to ameliorate excessive levels of TGF-β signaling in the developing lung.


1997 ◽  
Vol 60 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Heber C. Nielsen ◽  
Ana Martin ◽  
MaryAnn V. Volpe ◽  
Dimitrios Hatzis ◽  
Robert J. Vosatka

Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1759-1767 ◽  
Author(s):  
L. Schuger ◽  
G.R. Johnson ◽  
K. Gilbride ◽  
G.D. Plowman ◽  
R. Mandel

Epithelial and mesenchymal cells isolated from mouse embryonic lungs synthesized and responded to amphiregulin (AR) in a different fashion. Mesenchymal cells produced and deposited 3- to 4-fold more AR than epithelial cells, proliferated in the presence of exogenous AR, and their spontaneous growth was blocked by up to 85% by anti-AR antibodies. In contrast, epithelial cells exhibited a broad response to this growth regulator factor depending on whether they were supplemented with extracellular matrix (ECM) and whether this ECM was of epithelial or mesenchymal origin. AR-treated epithelial cells proliferated by up to 3-fold in the presence of mesenchymal-deposited ECM, remained unchanged in the presence of epithelial-deposited ECM, and decreased in their proliferation rate below controls in the absence of ECM supplementation. This effect was abolished by treatment with the glycosaminoglycan-degrading enzymes heparinase and heparitinase suggesting the specific involvement of heparan sulfate proteoglycan (HSPG) in AR-mediated cell proliferation. In whole lung explants, branching morphogenesis was inhibited by antibodies against the AR heparan sulfate binding site and stimulated by exogenous AR. Since during development, epithelial cells are in contact with mesenchymal ECM at the tips of the growing buds and alongside the basement membrane, focal variations in the proportion of epithelial and mesenchymal HSPG will focally affect epithelial proliferation rates. Therefore, AR-HSPG interaction may underlie the process of branching morphogenesis by inducing differential cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document