steam reforming catalysts
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 8)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Kevin Ploner ◽  
Parastoo Delir Kheyrollahi Nezhad ◽  
Albert Gili ◽  
Franz Kamutzki ◽  
Aleksander Gurlo ◽  
...  

The adaption of the sol-gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming...


2020 ◽  
Vol 20 (7) ◽  
pp. 4327-4330
Author(s):  
Ye Sol Lim ◽  
Min-Jin Lee ◽  
Kyoung-Jin Lee ◽  
Sangjin Lee ◽  
Haejin Hwang

CeO2-promoted Ni/Al2O3 catalysts were fabricated by impregnation. The effects of the CeO2 promotion and impregnation order on the microstructural evolution and catalytic durability were investigated for methane steam reforming. The CeO2-promoter nanoparticles resulted in good dispersion and reduced particle size of Ni catalysts. The enhanced durability of CeO2-promoted Ni/Al2O3 catalysts might be associated with the depression of carbon deposition by the presence of CeO2-promoter nanoparticles.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2792 ◽  
Author(s):  
Gabriella Garbarino ◽  
Federico Pugliese ◽  
Tullio Cavattoni ◽  
Guido Busca ◽  
Paola Costamagna

Three Ni-based natural gas steam reforming catalysts, i.e., commercial JM25-4Q and JM57-4Q, and a laboratory-made catalyst (26% Ni on a 5% SiO2–95% Al2O3), are tested in a laboratory reactor, under carbon dioxide methanation and methane steam reforming operating conditions. The laboratory catalyst is more active in both CO2 methanation (equilibrium is reached at 623 K with 100% selectivity) and methane steam reforming (92% hydrogen yield at 890 K) than the two commercial catalysts, likely due to its higher nickel loading. In any case, commercial steam reforming catalysts also show interesting activity in CO2 methanation, reduced by K-doping. The interpretation of the experimental results is supported by a one-dimensional (1D) pseudo-homogeneous packed-bed reactor model, embedding the Xu and Froment local kinetics, with appropriate kinetic parameters for each catalyst. In particular, the H2O adsorption coefficient adopted for the commercial catalysts is about two orders of magnitude higher than for the laboratory-made catalyst, and this is in line with the expectations, considering that the commercial catalysts have Ca and K added, which may promote water adsorption.


2020 ◽  
Vol 10 (24) ◽  
pp. 8429-8436
Author(s):  
Casper Brady ◽  
Jian Pan ◽  
Bingjun Xu

Next generation aeronautic solid oxide fuel cell systems require the development of sulfur resilient steam reforming catalysts. We show that simple Ni–Mn catalysts are substantially more stable than typical Ni catalysts.


2019 ◽  
Vol 13 (2) ◽  
pp. 88
Author(s):  
Devie Herdiansyah ◽  
Sri Haryati ◽  
Muhammad Djoni Bustan

The presence of H2S in natural gas is very detrimental to ammonia industry because it can poison and deactivate steam reforming catalysts. In the ammonia plant Pusri-IB PT. Pusri Palembang, H2S was separated in the Desulfurizer Unit (201-D) by adsorption using ZnO adsorbent at low temperature (28 ° C). Unfortunately, in this process the ZnO adsorbent cannot be regenerated so that within one year the ZnO adsorbent will be saturated with sulfur. The alternative process of H2S separation is to dissociate H2S into its constituent elements (hydrogen and sulfur) with catalytic process. The magnesium oxide catalyst was chosen because magnesium oxide is a metal oxide compound widely known in the catalysis process and has two active sites. The highest H2S conversion that can be achieved by MgO catalyst is 92.29%. Unlike ZnO, MgO does not absorb H2S, but catalyzes the dissociation of H2S into hydrogen and solid sulfur without being changed consumed by the reaction itself so that the MgO catalyst has a longer life time than the ZnO adsorbent.A B S T R A KKandungan H2S dalam gas alam sangat merugikan bagi industri amoniak karena dapat meracuni dan mendeaktivasi katalis steam reforming. Di pabrik amoniak Pusri-IB PT. Pusri Palembang, H2S dipisahkan di Unit Desulfurizer (201-D) secara adsorpsi dengan menggunakan adsorben ZnO pada temperatur rendah (28 ° C). Namun sangat disayangkan, pada proses ini adsorben ZnO tidak dapat diregenerasi sehingga dalam kurun waktu satu tahun adsorben ZnO akan jenuh oleh sulfur. Salah satu alternatif proses pemisahan H2S adalah dengan mendisosiasi H2S menjadi unsur penyusunnya yaitu hidrogen dan sulfur dengan bantuan katalis. Katalis magnesium oksida dipilih karena magnesium oksida merupakan senyawa metal oksida yang penggunaannya sudah dikenal luas dalam proses katalisis serta memiliki dua gugus aktif. Konversi H2S tertinggi yang dapat dicapai katalis MgO adalah sebesar 92,29%. Berbeda halnya dengan ZnO, MgO tidak menyerap H2S, namun mengkatalisis proses disosiasi H2S menjadi hidrogen dan sulfur padat tanpa mengalami perubahan atau terkonsumsi oleh reaksi itu sendiri sehingga katalis MgO memiliki life time yang lebih lama dibanding adsorben ZnO. 


2019 ◽  
Vol 19 (2) ◽  
pp. 142-148
Author(s):  
O. L. Ovsienko ◽  
P. A. Nikulshin ◽  
A. N. Karavanov ◽  
V. A. Yushkin

The performance of the Russian catalyst for steam conversion of hydrocarbons was monitored. The catalyst was produced at the Angarsk Plant for Catalysts and Organic Synthesis and operated in a hydrogen generation unit at the Syzran Refinery. The Russian catalyst was compared to the imported analog under the Rosneft program of import substitution. It was demonstrated under industrial conditions that the Russian catalyst is comparable in quality with the world standards.


Sign in / Sign up

Export Citation Format

Share Document