initial heat treatment
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2125 (1) ◽  
pp. 012057
Author(s):  
Xiaochun Sheng ◽  
Ying Jin ◽  
Mulin Li ◽  
Qi Shen ◽  
Zhi Shen ◽  
...  

Abstract In-situ Cu-based composites have been investigated extensively over the past decades because of their good conductivity and high strength. The preparation technologies of in-situ Cu-based composites mainly include casting of Cu alloys, initial heat treatment, hot deformation, cold deformation, intermediate and final heat treatment. This paper primarily researched the effect of thermo-mechanical processing such as initial heat treatment, hot deformation, cold deformation, intermediate and final heat treatments on the property and microstructure of in-situ Cu-based composites, analyzed the main role and mechanism of each thermo-mechanical processing, summarized the related research work and achievements, and prospected the future main research directions of the thermo-mechanical processing for in-situ Cu-based composites.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 385
Author(s):  
Lisa Winter ◽  
Kristin Hockauf ◽  
Mario Scholze ◽  
Ralph Jörg Hellmig ◽  
Thomas Lampke

In the present study, the influence of the initial heat-treatment conditions on the artificial aging behavior after conventional linear extrusion at room temperature was investigated for the precipitation hardening of a 6056 aluminum alloy. A solution-annealed condition was systematically compared to naturally-aged and pre-aged conditions. Differential scanning calorimetry was used for analyzing the precipitation sequence and its dependence on the initial heat treatment. The natural aging behavior prior to extrusion and the artificial aging behavior after extrusion were determined by microhardness measurements as a function of the aging time. Furthermore, the microstructure, dependent on the induced strain, was investigated using optical microscopy and transmission electron microscopy. As a result of pre-aging, following a solid-solution treatment, the formation of stable room-temperature clusters was suppressed and natural aging was inhibited. The artificial aging response after extrusion was significantly enhanced by pre-aging, and the achieved hardness and strength were significantly higher when compared with the equally processed solution-annealed or naturally-aged conditions.


2016 ◽  
Vol 879 ◽  
pp. 631-636
Author(s):  
Antoine Gueydan ◽  
Eric Hug

X-Ray analysis was performed on copper-clad aluminum wires at 423 K and 673 K to follow their microstructural evolution and understand their strain behavior under creep deformation, potential operating load in automotive industry. The lifetime of the wires is found to be strongly dependent on the existence of an initial heat treatment and on the applied stress. Annealed drawn wires verify a traditional Norton law in the overall range of the stress level. Raw drawn wires exhibit a distinct two stage behavior with a breakdown around an applied stress of 0.7 times the yield stress. It is shown in this work that the intermetallic compounds between copper and aluminum play only the role of a mechanical bounding without affecting the strain rate of the wires.


2016 ◽  
Vol 879 ◽  
pp. 1471-1476 ◽  
Author(s):  
Pedro Henrique R. Pereira ◽  
Yi Huang ◽  
Terence G. Langdon

An Al-3% Mg-0.2% Sc alloy was subjected to annealing or solution treatment and further processed by HPT at room temperature. Microhardness measurements were taken along the middle-sections of the discs and they demonstrated that a very substantial hardening is achieved during HPT processing regardless of the initial heat treatment. Hardness values of ~200 Hv were recorded at the edge of the samples although the microhardness distribution remained inhomogeneous along the diameters of the discs after 20 turns of high-pressure torsion. In addition, the microhardness of the solution treated Al-Mg-Sc samples continued to increase with the equivalent strain imposed by the anvils even after 30 turns of HPT processing whereas the hardness at the edges of the annealed discs saturated after 10 turns. These differences in the hardness evolution are attributed to the higher Mg content in solid solution in the case of the solution treated samples and its influence on delaying the recovery rate of this aluminium alloy.


2015 ◽  
Vol 21 (6) ◽  
pp. 1038-1043
Author(s):  
Sung-Pyo Lee ◽  
Jong-Rak Lee ◽  
Tai-Joo Chung ◽  
Yeong-Kyeun Paek ◽  
Seung-Ho Yang ◽  
...  

2015 ◽  
Vol 41 (3) ◽  
pp. 3677-3683 ◽  
Author(s):  
Jong-Rak Lee ◽  
Tai-Joo Chung ◽  
Seung-Ho Yang ◽  
Gil-Su Hong ◽  
Kyung-Sik Oh

2014 ◽  
Vol 922 ◽  
pp. 207-212
Author(s):  
Antoine Gueydan ◽  
Eric Hug ◽  
Bernadette Domengès

Creep tests were performed on copper-clad aluminum wires at 423 K and different stresses to cover potential operating load ranges in automotive industry. The lifetime of the wires is strongly dependent on the existence of an initial heat treatment and on the applied stress. It can be correlated with the formation of the three intermetallics Al2Cu, AlCu and Al4Cu9 identified by TEM diffraction. All results are discussed to understand mechanisms that could lead to the embrittlement of copper-clad aluminum wires by creep.


Sign in / Sign up

Export Citation Format

Share Document