scholarly journals High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment

2019 ◽  
Vol 68 (13) ◽  
pp. 132901
Author(s):  
Xia Zhan ◽  
Kelleher Joe ◽  
Jian-Bo Gao ◽  
Yan-Ling Ma ◽  
Ming-Qiang Chu ◽  
...  
2020 ◽  
Vol 214 ◽  
pp. 113010
Author(s):  
Anna Mandziak ◽  
Juan de la Figuera ◽  
Jose Emilio Prieto ◽  
Jordi Prat ◽  
Michael Foerster ◽  
...  

2020 ◽  
Vol 27 (5) ◽  
pp. 1209-1217 ◽  
Author(s):  
Anders Bank Blichfeld ◽  
Kristine Bakken ◽  
Dmitry Chernyshov ◽  
Julia Glaum ◽  
Tor Grande ◽  
...  

Understanding the crystallization process for chemical solution deposition (CSD) processed thin films is key in designing the fabrication strategy for obtaining high-quality devices. Here, an in situ sample environment is presented for studying the crystallization of CSD processed thin films under typical processing parameters using near-grazing-incidence synchrotron X-ray diffraction. Typically, the pyrolysis is performed in a rapid thermal processing (RTP) unit, where high heating rates, high temperatures and atmosphere control are the main control parameters. The presented in situ setup can reach heating rates of 20°C s−1 and sample surface temperatures of 1000°C, comparable with commercial RTP units. Three examples for lead-free ferroelectric thin films are presented to show the potential of the new experimental set-up: high temperature, for crystallization of highly textured Sr0.4Ba0.6Nb2O6 on a SrTiO3 (001) substrate, high heating rate, revealing polycrystalline BaTiO3, and atmosphere control with 25% CO2, for crystallization of BaTiO3. The signal is sufficient to study a single deposited layer (≥10 nm for the crystallized film) which then defines the interface between the substrate and thin film for the following layers. A protocol for processing the data is developed to account for a thermal shift of the entire setup, including the sample, to allow extraction of maximum information from the refinement, e.g. texture. The simplicity of the sample environment allows for the future development of even more advanced measurements during thin-film processing under non-ambient conditions.


2021 ◽  
Vol 28 (2) ◽  
pp. 530-537
Author(s):  
Pierre Lhuissier ◽  
Therese Bormann ◽  
Guillaume Pelloux ◽  
Xavier Bataillon ◽  
Franck Pelloux ◽  
...  

Metallic materials processing such as rolling, extrusion or forging often involves high-temperature deformation. Usually under such conditions the samples are characterized post mortem, under pseudo in situ conditions with interrupted tests, or in situ with a limited strain rate. A full in situ 3D characterization, directly during high-temperature deformation with a prescribed strain-rate scheme, requires a dedicated sample environment and a dedicated image-analysis workflow. A specific sample environment has been developed to enable highly controlled (temperature and strain rate) high-temperature deformation mechanical testing to be conducted while performing in situ tomography on a synchrotron beamline. A dedicated digital volume correlation algorithm is used to estimate the strain field and track pores while the material endures large deformations. The algorithm is particularly suitable for materials with few internal features when the deformation steps between two images are large. An example of an application is provided: a high-temperature compression test on a porous aluminium alloy with individual pore tracking with a specific strain-rate scheme representative of rolling conditions.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2021 ◽  
Vol 92 (2) ◽  
pp. 025111
Author(s):  
T. Schmidt ◽  
D. Schlander ◽  
V. Jüchter ◽  
J. Baranyai ◽  
F. Neuberger ◽  
...  

2020 ◽  
Vol 48 (11) ◽  
pp. 1356-1364
Author(s):  
Jun HAN ◽  
Yang-shuo LIANG ◽  
Bo ZHAO ◽  
Zi-jiang XIONG ◽  
Lin-bo QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document