scholarly journals Reconstructed Interpolating Differential Operator Method with Arbitrary Order of Accuracy for the Hyperbolic Equation

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 295
Author(s):  
Shijian Lin ◽  
Qi Luo ◽  
Hongze Leng ◽  
Junqiang Song

We propose a family of multi-moment methods with arbitrary orders of accuracy for the hyperbolic equation via the reconstructed interpolating differential operator (RDO) approach. Reconstruction up to arbitrary order can be achieved on a single cell from properly allocated model variables including spatial derivatives of varying orders. Then we calculate the temporal derivatives of coefficients of the reconstructed polynomial and transform them into the temporal derivatives of the model variables. Unlike the conventional multi-moment methods which evolve different types of moments by deriving different equations, RDO can update all derivatives uniformly via a simple linear transform more efficiently. Based on difference in introducing interaction from adjacent cells, the central RDO and the upwind RDO are proposed. Both schemes enjoy high-order accuracy which is verified by Fourier analysis and numerical experiments.

2007 ◽  
Vol 44 (3) ◽  
pp. 391-409 ◽  
Author(s):  
Melda Duman ◽  
Alp Kiraç ◽  
Oktay Veliev

We obtain asymptotic formulas with arbitrary order of accuracy for the eigenvalues and eigenfunctions of a nonselfadjoint ordinary differential operator of order n whose coefficients are Lebesgue integrable on [0, 1] and the boundary conditions are strongly regular. The orders of asymptotic formulas are independent of smoothness of the coefficients.


2019 ◽  
Vol 10 (2) ◽  
pp. 81-91 ◽  
Author(s):  
Daniela S. Oliveira ◽  
Edmundo Capelas de Oliveira

Abstract In this paper, we present a new differential operator of arbitrary order defined by means of a Caputo-type modification of the generalized fractional derivative recently proposed by Katugampola. The generalized fractional derivative, when convenient limits are considered, recovers the Riemann–Liouville and the Hadamard derivatives of arbitrary order. Our differential operator recovers as limiting cases the arbitrary order derivatives proposed by Caputo and by Caputo–Hadamard. Some properties are presented as well as the relation between this differential operator of arbitrary order and the Katugampola generalized fractional operator. As an application we prove the fundamental theorem of fractional calculus associated with our operator.


2018 ◽  
Vol 24 (23) ◽  
pp. 5650-5664 ◽  
Author(s):  
Shang–Teh Wu ◽  
Shan-Qun Tang ◽  
Kuan–Po Huang

This paper investigates the vibration control of a two-link flexible manipulator carried by a translational stage. The first and the second links are each driven by a stage motor and a joint motor. By treating the joint motor as a virtual spring, the two-link manipulator can be regarded as an integral flexible arm driven by the stage motor. A noncollocated controller is devised based on feedback from the deflection of the virtual spring, which can be measured by a shaft encoder. Stability of the closed-loop system is analyzed by examining the spatial derivatives of the modal functions. By including a bandpass filter in the feedback loop, residual vibrations can be attenuated without exciting high-frequency vibrations. The control method is simple to implement; its effectiveness is confirmed by simulation and experimental results.


1983 ◽  
Vol 29 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata

The ponderomotive force generated by random Alfvén waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfvén waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfvén waves is also investigated.


2021 ◽  
Vol 5 (4) ◽  
pp. 203
Author(s):  
Suzan Cival Buranay ◽  
Nouman Arshad ◽  
Ahmed Hersi Matan

We give fourth-order accurate implicit methods for the computation of the first-order spatial derivatives and second-order mixed derivatives involving the time derivative of the solution of first type boundary value problem of two dimensional heat equation. The methods are constructed based on two stages: At the first stage of the methods, the solution and its derivative with respect to time variable are approximated by using the implicit scheme in Buranay and Arshad in 2020. Therefore, Oh4+τ of convergence on constructed hexagonal grids is obtained that the step sizes in the space variables x1, x2 and in time variable are indicated by h, 32h and τ, respectively. Special difference boundary value problems on hexagonal grids are constructed at the second stages to approximate the first order spatial derivatives and the second order mixed derivatives of the solution. Further, Oh4+τ order of uniform convergence of these schemes are shown for r=ωτh2≥116,ω>0. Additionally, the methods are applied on two sample problems.


1995 ◽  
Vol 10 (28) ◽  
pp. 4087-4105 ◽  
Author(s):  
KH. S. NIROV

A Hamiltonian description is constructed for a wide class of mechanical systems having local symmetry transformations depending on time derivatives of the gauge parameters of arbitrary order. The Poisson brackets of the Hamiltonian and constraints with each other and with an arbitrary function are explicitly obtained. The constraint algebra is proved to be of the first class.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jia Guo ◽  
Huajun Zhu ◽  
Zhen-Guo Yan ◽  
Lingyan Tang ◽  
Songhe Song

By introducing hybrid technique into high-order CPR (correction procedure via reconstruction) scheme, a novel hybrid WCNS-CPR scheme is developed for efficient supersonic simulations. Firstly, a shock detector based on nonlinear weights is used to identify grid cells with high gradients or discontinuities throughout the whole flow field. Then, WCNS (weighted compact nonlinear scheme) is adopted to capture shocks in these areas, while the smooth area is calculated by CPR. A strategy to treat the interfaces of the two schemes is developed, which maintains high-order accuracy. Convergent order of accuracy and shock-capturing ability are tested in several numerical experiments; the results of which show that this hybrid scheme achieves expected high-order accuracy and high resolution, is robust in shock capturing, and has less computational cost compared to the WCNS.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Jianfei Wang

LetBXbe the unit ball in a complex Banach spaceX. AssumeBXis homogeneous. The generalization of the Schwarz-Pick estimates of partial derivatives of arbitrary order is established for holomorphic mappings from the unit ballBntoBXassociated with the Carathéodory metric, which extend the corresponding Chen and Liu, Dai et al. results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
N. Mindu ◽  
D. P. Mason

The derivation of conservation laws for the magma equation using the multiplier method for both the power law and exponential law relating the permeability and matrix viscosity to the voidage is considered. It is found that all known conserved vectors for the magma equation and the new conserved vectors for the exponential laws can be derived using multipliers which depend on the voidage and spatial derivatives of the voidage. It is also found that the conserved vectors are associated with the Lie point symmetry of the magma equation which generates travelling wave solutions which may explain by the double reduction theorem for associated Lie point symmetries why many of the known analytical solutions are travelling waves.


Sign in / Sign up

Export Citation Format

Share Document