lipid binding site
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ruitao Jin ◽  
Sitong He ◽  
Katrina A. Black ◽  
Oliver B. Clarke ◽  
Di Wu ◽  
...  

AbstractIon currents through potassium channels are gated. Constriction of the ion conduction pathway at the inner helix bundle, the textbook ‘gate’ of Kir potassium channels, has been shown to be an ineffective permeation control, creating a rift in our understanding of how these channels are gated. Here we present the first evidence that anionic lipids act as interactive response elements sufficient to gate potassium conduction. We demonstrate the limiting barrier to K+ permeation lies within the ion conduction pathway and show that this ‘gate’ is operated by the fatty acyl tails of lipids that infiltrate the conduction pathway via fenestrations in the walls of the pore. Acyl tails occupying a surface groove extending from the cytosolic interface to the conduction pathway provide a potential means of relaying cellular signals, mediated by anionic lipid head groups bound at the canonical lipid binding site, to the internal gate.


2021 ◽  
pp. 100899
Author(s):  
Akshay Sridhar ◽  
Sarah C.R. Lummis ◽  
Diletta Pasini ◽  
Aujan Mehregan ◽  
Marijke Brams ◽  
...  

2021 ◽  
Author(s):  
Sai Srinivas Panapakkan Giridharan ◽  
Guangming S Luo ◽  
Pilar S Rivero-Rios ◽  
Noah S Steinfeld ◽  
Helene Tronchere ◽  
...  

Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition causes a loss of Retriever and CCC from endosomes, and mutation of the lipid binding site on a CCC subunit impairs its endosomal localization and delays integrin recycling. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
David J. Wright ◽  
Katie J. Simmons ◽  
Rachel M. Johnson ◽  
David J. Beech ◽  
Stephen P. Muench ◽  
...  

AbstractTRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. Xanthine-based modulators include the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Here we report the structure of a small-molecule-bound TRPC1/4/5 channel—human TRPC5 in complex with the xanthine Pico145—to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 510
Author(s):  
Withan Teajaroen ◽  
Suphaporn Phimwapi ◽  
Jureerut Daduang ◽  
Sompong Klaynongsruang ◽  
Varomyalin Tipmanee ◽  
...  

Phospholipase A1 from Thai banded tiger wasp (Vespa affinis) venom also known as Ves a 1 plays an essential role in fatal vespid allergy. Ves a 1 becomes an important therapeutic target for toxin remedy. However, established Ves a 1 structure or a mechanism of Ves a 1 function were not well documented. This circumstance has prevented efficient design of a potential phospholipase A1 inhibitor. In our study, we successfully recruited homology modeling and molecular dynamic (MD) simulation to model Ves a 1 three-dimensional structure. The Ves a 1 structure along with dynamic behaviors were visualized and explained. In addition, we performed molecular docking of Ves a 1 with 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) lipid to assess a possible lipid binding site. Interestingly, molecular docking predicted another lipid binding region apart from its corresponding catalytic site, suggesting an auxiliary role of the alternative site at the Ves a 1 surface. The new molecular mechanism related to the surface lipid binding site (auxiliary site) provided better understanding of how phospholipase A1 structure facilitates its enzymatic function. This auxiliary site, conserved among Hymenoptera species as well as some mammalian lipases, could be a guide for interaction-based design of a novel phospholipase A1 inhibitor.


Author(s):  
David J. Wright ◽  
Katie J. Simmons ◽  
Rachel M. Johnson ◽  
David J. Beech ◽  
Stephen P. Muench ◽  
...  

AbstractTRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered the first clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. The xanthine class of modulators includes the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Targeting this pocket may be a promising strategy for TRPC1/4/5 drug discovery. Here we report the first structure of a small molecule-bound TRPC1/4/5 channel – human TRPC5 in complex with the xanthine Pico145 – to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.


2019 ◽  
Author(s):  
Qinrui Wang ◽  
George Hedger ◽  
Prafulla Aryal ◽  
Mariana Grieben ◽  
Chady Nasrallah ◽  
...  

AbstractPolycystin-2 (PC2) is a member of the TRPP subfamily of TRP channels and is present in ciliary membranes of the kidney. PC2 can be either homo-tetrameric, or heterotetrameric with PC1. PC2 shares a common transmembrane fold with other TRP channels, in addition to having a novel extracellular domain. Several TRP channels have been suggested to be regulated by lipids, including phosphatidylinositol phosphates (PIPs). We have combined molecular dynamics simulations with cryoelectron microscopy to explore possible lipid interactions sites on PC2. We propose that PC2 has a PIP-binding site close to the equivalent vanilloid/lipid-binding site in the TRPV1 channel. A 3.0 Å cryoelectron microscopy map reveals a binding site for cholesterol on PC2. Cholesterol interactions with the channel at this site are further characterized by MD simulations. These results help to position PC2 within an emerging model of the complex roles of lipids in the regulation and organization of ciliary membranes.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Aimin Yang ◽  
Supansa Pantoom ◽  
Yao-Wen Wu

Autophagy is a conserved cellular process involved in the elimination of proteins and organelles. It is also used to combat infection with pathogenic microbes. The intracellular pathogen Legionella pneumophila manipulates autophagy by delivering the effector protein RavZ to deconjugate Atg8/LC3 proteins coupled to phosphatidylethanolamine (PE) on autophagosomal membranes. To understand how RavZ recognizes and deconjugates LC3-PE, we prepared semisynthetic LC3 proteins and elucidated the structures of the RavZ:LC3 interaction. Semisynthetic LC3 proteins allowed the analysis of structure-function relationships. RavZ extracts LC3-PE from the membrane before deconjugation. RavZ initially recognizes the LC3 molecule on membranes via its N-terminal LC3-interacting region (LIR) motif. The RavZ α3 helix is involved in extraction of the PE moiety and docking of the acyl chains into the lipid-binding site of RavZ that is related in structure to that of the phospholipid transfer protein Sec14. Thus, Legionella has evolved a novel mechanism to specifically evade host autophagy.


2015 ◽  
Vol 108 (8) ◽  
pp. 1987-1996 ◽  
Author(s):  
Daniel K. Weber ◽  
Shenggen Yao ◽  
Nejc Rojko ◽  
Gregor Anderluh ◽  
Terry P. Lybrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document