phosphatidylinositol phosphates
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Rocio Garcia-Rodas ◽  
Hayet Labbaoui ◽  
François Orange ◽  
Norma Solis ◽  
Oscar Zaragoza ◽  
...  

Phosphatidylinositol phosphates are key phospholipids with a range of regulatory roles, including membrane trafficking and cell polarity. Phosphatidylinositol-4-phosphate [PI(4)P] at the Golgi is required for the budding to filamentous growth transition in the human pathogenic fungus Candida albicans, however the role of plasma membrane PI(4)P is unclear. We have investigated the importance of this phospholipid in C. albicans growth, stress response, and virulence by generating mutant strains with decreased levels of plasma membrane PI(4)P, via deletion of components of the PI-4-kinase complex, i.e. Efr3, Ypp1 and Stt4. The amount of plasma membrane PI(4)P in the efr3∆/∆ and ypp1∆/∆ mutant was ~60% and ~40% of the wild-type strain, respectively, whereas it was nearly undetectable in the stt4∆/∆ mutant. All three mutants had reduced plasma membrane phosphatidylserine (PS). Although these mutants had normal yeast phase growth, they were defective in filamentous growth, exhibited defects in cell wall integrity and had an increased exposure of cell wall β(1,3)-glucan, yet they induced a range of hyphal specific genes. In a mouse model of hematogenously disseminated candidiasis, fungal plasma membrane PI(4)P levels directly correlated with virulence; the efr3∆/∆ had wild-type virulence, the ypp1∆/∆ mutant had attenuated virulence and the stt4∆/∆ mutant caused no lethality. In the mouse model of orpharyngeal candidiasis, only the ypp1∆/∆ mutant had reduced virulence, indicating that plasma membrane PI(4)P is less important for proliferation in the oropharynx. Collectively, these results demonstrate that plasma membrane PI(4)P levels play a central role in filamentation, cell wall integrity and virulence in C. albicans.


2021 ◽  
Author(s):  
Kyle I.P. Le Huray ◽  
He Wang ◽  
Frank Sobott ◽  
Antreas C Kalli

Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphates (PIPs). Here we report the systematic simulation of the interactions of 100 mammalian PH domains with PIP containing model membranes. Comparison with crystal structures of PH domains bound to PIP analogues demonstrates that our method correctly identifies interactions at known canonical and non-canonical sites, while revealing additional functionally important sites for interaction not observed in the crystal structure, such as for P-Rex1 and Akt1. At the family level, we find that the β1 and β2 strands and their connecting loop constitute the primary PIP interaction site for the majority of PH domains, but we highlight interesting exceptional cases. Simultaneous interaction with multiple PIPs and clustering of PIPs induced by PH domain binding are also observed. Our findings support a general paradigm for PH domain membrane association involving multivalent interactions with anionic lipids.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1205
Author(s):  
Troy A. Kervin ◽  
Michael Overduin

The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yali Ci ◽  
Yang Yang ◽  
Caimin Xu ◽  
Cheng-Feng Qin ◽  
Lei Shi

Flavivirus replication occurs in membranous replication compartments, also known as replication organelles (ROs) derived from the host ER membrane. Our previous study showed that the non-structural (NS) protein 1 (NS1) is the essential factor for RO creation by hydrophobic insertion into the ER membrane. Here, we found that the association of NS1 with the membrane can be facilitated by the electrostatic interaction between NS1 and negatively charged lipids. NS1 binds to a series of negatively charged lipids, including PI4P, and a positively charged residue, R31, located on the membrane-binding face of NS1, plays important roles in this interaction. The NS1 R31E mutation significantly impairs NS1 association with negatively charged membrane and its ER remodeling ability in the cells. To interfere with the electrostatic interaction between NS1 and negatively charged lipids, intracellular phosphatidylinositol phosphates (PIPs) level was downregulated by the overexpression of Sac1 or treatment with PI3K and PI4K inhibitors to attenuate flavivirus replication. Our findings emphasize the importance of electrostatic interaction between NS1 and negatively charged lipids in flavivirus RO formation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katharina Reeh ◽  
Peter A. Summers ◽  
Ian R. Gould ◽  
Rudiger Woscholski ◽  
Ramon Vilar

Abstract Phosphatidylinositol phosphates (PIPs) are membrane phospholipids that play crucial roles in a wide range of cellular processes. Their function is dictated by the number and positions of the phosphate groups in the inositol ring (with seven different PIPs being active in the cell). Therefore, there is significant interest in developing small-molecule receptors that can bind selectively to these species and in doing so affect their cellular function or be the basis for molecular probes. However, to date there are very few examples of such molecular receptors. Towards this aim, herein we report a novel tripodal molecule that acts as receptor for mono- and bis-phosphorylated PIPs in a cell free environment. To assess their affinity to PIPs we have developed a new cell free assay based on the ability of the receptor to prevent alkaline phosphatase from hydrolysing these substrates. The new receptor displays selectivity towards two out of the seven PIPs, namely PI(3)P and PI(3,4)P2. To rationalise these results, a DFT computational study was performed which corroborated the experimental results and provided insight into the host–guest binding mode.


2020 ◽  
Vol 8 (7) ◽  
pp. 1050
Author(s):  
Natsuki Watanabe ◽  
Kumiko Nakada-Tsukui ◽  
Tomohiko Maehama ◽  
Tomoyoshi Nozaki

Phosphatidylinositol phosphates (PIPs) are involved in many cellular events as important secondary messengers. In Entamoeba histolytica, a human intestinal protozoan parasite, virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis are regulated by PIPs. It has been well established that PI3P, PI4P, and PI(3,4,5)P3 play specific roles during amoebic trogo- and phagocytosis. In the present study, we demonstrated the nuclear localization of PI4P in E. histolytica trophozoites in steady state with immunofluorescence imaging and immunoelectron microscopy, using anti-PI4P antibodies and PI4P biosensors [substrate of the Icm/ Dot type IV secretion system (SidM)]. We further showed that the nuclear PI4P decreased after a co-culture with human erythrocytes or Chinese hamster ovary (CHO) cells. However, concomitant changes in the localization and the amount of PI(4,5)P2, which is the expected major metabolized (phosphorylated) product of PI4P, were not observed. This phenomenon was specifically caused by whole or ghost erythrocytes and CHO cells, but not artificial beads. The amount of PIP2 and PIP, biochemically estimated by [32P]-phosphate metabolic labeling and thin layer chromatography, was decreased upon erythrocyte adherence. Altogether, our data indicate for the first time in eukaryotes that erythrocyte attachment leads to the metabolism of nuclear PIPs, and metabolites other than PI(4,5)P2 may be involved in the regulation of downstream cellular events such as cytoskeleton rearrangement or transcriptional regulation.


2020 ◽  
Author(s):  
Nicholas J. Katris ◽  
Yoshiki Yamaryo-Botte ◽  
Jan Janouškovec ◽  
Serena Shunmugam ◽  
Christophe-Sebastien Arnold ◽  
...  

ABSTRACTHost cell invasion and subsequent egress by Toxoplasma parasites is regulated by a network of cGMP, cAMP, and calcium signalling proteins. Such eukaryotic signalling networks typically involve lipid second messengers including phosphatidylinositol phosphates (PIPs), diacylglycerol (DAG) and phosphatidic acid (PA). However, the lipid signalling network in Toxoplasma is poorly defined. Here we present lipidomic analysis of a mutant of central flippase/guanylate cyclase TgGC in Toxoplasma, which we show has disrupted turnover of signalling lipids impacting phospholipid metabolism and membrane stability. The turnover of signalling lipids is extremely rapid in extracellular parasites and we track changes in PA and DAG to within 5 seconds, which are variably defective upon disruption of TgGC and other signalling proteins. We then identify the position of each protein in the signal chain relative to the central cGMP signalling protein TgGC and map the lipid signal network coordinating conoid extrusion and microneme secretion for egress and invasion.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1992
Author(s):  
Catherine A. Tindall ◽  
Sebastian Dommel ◽  
Veronika Riedl ◽  
David Ulbricht ◽  
Stefanie Hanke ◽  
...  

Visceral adipose tissue derived serine protease inhibitor (vaspin) is a member of the serpin family and has been shown to have beneficial effects on glucose tolerance, insulin stability as well as adipose tissue inflammation, parameters seriously affected by obesity. Some of these effects require inhibition of target proteases such as kallikrein 7(KLK7) and many studies have demonstrated vaspin-mediated activation of intracellular signaling cascades in various cells and tissues. So far, little is known about the exact mechanism how vaspin may trigger these intracellular signaling events. In this study, we investigated and characterized the interaction of vaspin with membrane lipids and polyphosphates as well as their potential regulatory effects on serpin activity using recombinant vaspin and KLK7 proteins and functional protein variants thereof. Here, we show for the first time that vaspin binds to phospholipids and polyphosphates with varying effects on KLK7 inhibition. Vaspin binds strongly to monophosphorylated phosphatidylinositol phosphates (PtdInsP) with no effect on vaspin activation. Microscale thermophoresis (MST) measurements revealed high-affinity binding to polyphosphate 45 (KD: 466 ± 75 nM) and activation of vaspin in a heparin-like manner. Furthermore, we identified additional residues in the heparin binding site in β-sheet A by mutating five basic residues resulting in complete loss of high-affinity heparin binding. Finally, using lipid overlay assays, we show that these residues are additionally involved in PtdInsP binding. Phospholipids play a major role in membrane trafficking and signaling whereas polyphosphates are procoagulant and proinflammatory agents. The identification of phospholipids and polyphosphates as binding partners of vaspin will contribute to the understanding of vaspins involvement in membrane trafficking, signaling and beneficial effects associated with obesity.


Sign in / Sign up

Export Citation Format

Share Document