augen gneiss
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Bernard Bingen ◽  
Espen Torgersen ◽  
Morgan Ganerød

<p>Geological mapping, zircon U–Pb dating of 28 samples, and mica <sup>40</sup>Ar–<sup>39</sup>Ar dating of 7 samples in the Stavanger–Ryfylke region (Stavanger, Suldal, Nedstrand, Randøy) characterizes the tectonostratigraphy of the southernmost nappes in the Scandinavian Caledonides. Four main tectonostratigraphic levels are described. (1) The lowest phyllite/mica schist nappes –Buadalen, Holmasjø, Lower Finse, Synnfjell– represent the Cambro–Ordovician sediment cover of the Baltic margin. (2) The overlying nappes –Madla, Storheia, Dyrskard, Hallingskarvet– consist of felsic metaigneous rocks with a consistent age between c.1525 and 1493 Ma. They host c.1040 Ma intrusives and c.1025 Ma Sveconorwegian metamorphism. They likely represent transported Baltican (Sveconorwegian) basement, widely exposed in S Norway. (3) The overlying nappes –Sola, Boknafjord, Kvitenut, Revseggi– are more diverse and lack counterparts in the exposed Baltican crust. The Sola nappe, near Stavanger, comprises a marine succession –Kolnes succession– of mica schist, metasandstone, marble, amphibolite and felsic metavolcanic rocks. The metavolcanic rocks –Snøda metadacite–rhyolite– are fine-grained mica gneisses, with calc-alkaline composition. Their extrusion age of c.941–934 Ma date deposition of the sequence. Detrital zircons in a metasandstone sample (n=138) yield main age modes at c.1040, 1150 and 1395 Ma, as well as significant Paleoproterozoic and Archaean modes. The Kolnes succession was affected by Taconian/Grampian metamorphism peaking in eclogite-facies conditions between c.471 and 458 Ma (Smit et al., 2010), followed by regional cooling around 445–435 Ma. Leucogranite bodies (c.429 Ma) cut the Grampian fabric. Several <sup>40</sup>Ar–<sup>39</sup>Ar white mica and biotite plateau ages constrain the timing of Scandian top-to-the SE nappe stacking at c.420 Ma. The Boknafjord nappe in Nedstrand comprises a c.932 Ma augen gneiss, overlain successively by amphibolite and mica schist units. Preliminary detrital zircon data (n=11) imply an Ordovician (<459 Ma) deposition for the mica schist. (4) The highest nappes –Karmsund and Hardangerfjord– host the Karmøy and Bømlo ophiolite complexes. These complexes comprise a c.493 Ma supra subduction zone ophiolite, intruded by c.485–466 Ma volcanic arc plutonic rocks, and unconformably overlain by fossiliferous upper Ordovician (<c.445 Ma) clastic sediments (Pedersen and Dunning, 1997).</p><p>We propose that the Iapetan Karmøy–Bømlo ophiolite complexes were accreted onto the Kolnes succession on the Laurentian side of the Iapetus realm, during the Grampian orogeny, before integration of both in the Scandian nappe pile. The age of HP metamorphism in the Kolnes succession (471–458 Ma) matches the inferred timing for obduction of the Karmøy–Bømlo complexes (485–448 Ma). The evidence for a Laurentian margin obduction stems from a conspicuous similarity with Shetland. On Shetland, the c.492 Ma Unst–Fetlar ophiolite complex was obducted during the Grampian orogeny onto Neoproterozoic Laurentian marine sequences (psammite-marble-mica gneiss) of the Westing, Yell Sound and East Mainland successions. The Westing and Yell Sound successions are characterized by a c. 944–925 Ma, Renlandian, high-grade metamorphism, a dominant detrital zircon mode at 1030 Ma, and common Archean detrital zircons. They correlate well with the Kolnes succession and suggest an ancestry along the Neoproterozoic Renlandian active margin of Laurentia and Rodinia, before opening of Iapetus. </p>


2021 ◽  
Author(s):  
Eliane Aparecida Del Lama ◽  
Antônio Gilberto Costa

<p>Since the establishment of the Heritage Stone Subcommission by the International Union of Geological Sciences (IUGS), in 2011, idealized with the purpose of designating stones of historical significance to compose the Global Heritage Stone Resource (GHSR), 22 of them have been designated. The nationalities of these GHSR are: 3 British, 1 Norwegian, 2 Belgian, 2 Swedish, 1 Slovenian, 3 Italian, 2 Portuguese, 3 Spanish, 1 Maltese, 1 Indian, 2 American and 1 Argentine. So far, no Brazilian stone has been designated as GHSR. We can observe in monuments and buildings in the Brazilian territory the following imported GHSR: Lioz Stone and Estremoz Marble from Portugal, Carrara Marble and Rosa Beta Granite from Italy and Larvikite from Norway. The use of stones from Portugal and Italy is related firstly to the Portuguese colonization and, later, to economic cycles, such as rubber and coffee, with Italian immigration being significant to the coffee cycle. The presence of Lioz is major, however, it is found almost exclusively in some Brazilian coastal capitals, such as Rio de Janeiro, Salvador and Belém. The churches of Salvador are richly decorated with numerous varieties of Lioz. In Belém, it is found in the Basilica of Nossa Senhora de Nazaré, among other churches, and in many tombstones in the Nossa Senhora da Soledade Cemetery. Estremoz Marble is found in commercial buildings and tombstones. In the city of São Paulo, lots of buildings have internal cladding and ornaments made in Carrara Marble, e.g. Municipal Theater, Palace of Justice, Metropolitan Cathedral and Obelisk Mausoleum for the Heroes of 32. In the city of Rio de Janeiro, the tomb of Orville Derby (founder of the Geological Survey of Brazil) at São João Batista Cemetery, among others, is decorated with Carrara Marble, which can also be seen in tomb art of Salvador, Belo Horizonte, Curitiba and São Paulo. Rosa Beta Granite can be seen at Monument to Bartolomeu de Gusmão in the city of Santos, costal area of São Paulo State. The use of Larvikite is contemporary. This stone is mainly present in tombstones, for example, at the Consolação Cemetery in São Paulo, but it also decorates the façades of several commercial buildings, both in capitals and several Brazilian cities. In Brazil, several types of Brazilian stones are found in monuments and religious or administrative buildings. These stones, which have been used since Colonial Brazil, are characteristic of certain regions, such as Augen Gneiss in Rio de Janeiro, Itaquera Granite in São Paulo, beachrock in northeastern Brazil, quartzites and steatite in Minas Gerais, among others. Some of them constitute UNESCO World Heritage Sites, and due to their historical importance to our heritage, these stones may be indicated as GHSR in the future.</p>


2020 ◽  
Vol 123 (3) ◽  
pp. 431-440
Author(s):  
C.A. Groenewald ◽  
P.H. Macey

Abstract The granitic and leucogranitic Yas and Schuitdrift Gneisses occur together as a large ovoid pre-tectonic batholith that crosses the Orange River border between South Africa and Namibia. They occur in the central parts of the Kakamas Domain in the Namaqua Sector of the Namaqua-Natal Metamorphic Province where they intrude, and are deformed together with, slightly older (~1.21 Ga) orthogneisses and granulite-facies metapelitic gneisses. The Yas Gneiss occurs mainly on the outer perimeter and northern parts of the batholith and comprises equigranular leucogranite gneiss and biotite granite augen orthogneiss, whereas the Schuitdrift biotite-hornblende augen gneiss is located at the centre and southern parts of the batholith. The batholith is strongly deformed with penetrative Namaqua-aged gneissic fabrics defined by grain-flattening of quartz and feldspar in the equigranular leucogneisses and aligned K-feldspar megacrysts in the augen gneisses. The gneissic fabric is refolded during a large-scale folding event that results in the dome-shape of the batholith and controls the present outcrop pattern of its various components. Flexure along the margins of the batholith refoliated the gneisses into a zone of mylonitic rocks. The Yas and Schuitdrift Gneisses have similar geochemistry and classify as alkali granites and alkali leucogranites. They are felsic (mean SiO2: 74.5 wt%) and potassic (mean K2O: 5.8 wt%) but have low MgO, CaO and Na2O, reflecting their low mafic mineral and plagioclase contents. The Schuitdrift Gneiss yielded U-Pb zircon ages of 1 191 ± 7 and 1 187 ± 6 Ma.


2020 ◽  
Vol 10 (14) ◽  
pp. 5006 ◽  
Author(s):  
Marc J. Addison ◽  
Michael O. Rivett ◽  
Peaches Phiri ◽  
Prince Mleta ◽  
Emma Mblame ◽  
...  

Consumption of groundwater containing fluoride exceeding World Health Organization (WHO) 1.5 mg/L standard leaves people vulnerable to fluorosis: a vulnerability not well characterised in Malawi. To evaluate geogenic fluoride source and concentration, groundwater fluoride and geology was documented in central Malawi where groundwater supplies are mainly sourced from the weathered basement aquifer. Lithological composition was shown as the main control on fluoride occurrence. Augen gneiss of granitic composition posed the greatest geological fluoride risk. The weathered basement aquifer profile was the main factor controlling fluoride distributions. These results and fluoride-lithology statistical analysis allowed the development of a graded map of geological fluoride risk. A direct link to human health risk (dental fluorosis) from geological fluoride was quantified to support science-led policy change for fluoride in rural drinking water in Malawi. Hazard quotient (HQ) values were calculated and assigned to specific water points, depending on user age group; in this case, 74% of children under six were shown to be vulnerable to dental fluorosis. Results are contrary to current standard for fluoride in Malawi groundwater of 6 mg/L, highlighting the need for policy change. Detailed policy recommendations are presented based on the results of this study.


2020 ◽  
Author(s):  
Bernard Bingen ◽  
Espen Torgersen ◽  
Morgan Ganerød ◽  
Nick M W Roberts

<p>Nappes of the Scandinavian Caledonides are the repository of information on both Caledonian orogenic evolution and pre-Caledonian geologic evolution of the Baltica and Laurentia margins and the Iapetus ocean. We report geological mapping, zircon U–Pb geochronological data on 33 samples, and mica 40Ar/39Ar data on 4 samples, along five profiles in the southernmost Caledonides in the Stavanger-Ryfylke region (Stavanger, Suldal, Nedstrand, Randøy, Røldal). <br>In Stavanger, the lowermost phyllite nappe –Buadalen nappe– is overlain by the Madla and Sola nappes (former Jæren Nappe). The Madla nappe comprises c. 1510–1495 Ma orthogneiss with Sveconorwegian metamorphism (c. 1025 Ma). The overlying Sola nappe comprises a sequence of mica schist, metasandstone, marble, amphibolite and felsic metavolcanic rocks. The metavolcanic rocks – Snøda metadacite-rhyolite – are fine-grained, frequently porphyritic, mica gneisses, with calc-alkaline, peraluminous, composition and negative Nb-Ta anomaly. Their extrusion ages of c. 941 and 934 Ma date deposition of the whole sequence. Detrital zircons in a metasandstone sample (n=138) yield main age modes at c. 1050 and 1150 Ma, significant Proterozoic and Archaean modes, and a maximum deposition age of c.990 Ma. The Sola nappe was affected by Taconian metamorphism peaking in eclogite-facies conditions at c.470 Ma (Smit et al., 2010), followed by regional cooling between c.446 Ma (white-mica) and 438 Ma (biotite). Trondhjemite dykes intruded at c.429 Ma, cutting the pre-Scandian fabric. <br>At regional scale, the lower nappes correlate over long distances. The lowest phyllite nappes –Buadalen, Holmasjø, Lower Finse and Synnfjell– represent the Cambro-Ordovician sediment cover of the Baltic margin, containing thin tectonic slivers of the underlying c. 1521 to 1225 Ma orthogneiss. The overlying nappes –Madla, Storheia, Dyrskard, Hallingskarvet, Espedalen– consist of felsic metavolcanic or metaplutonic rocks with a consistent age between c. 1525 and 1493 Ma with c. 1040 Ma intrusive, corresponding to the Telemarkian crystalline basement in S Norway. The Kvitenut nappe hosts metaplutonic rocks ranging from c. 1625 to 1039 Ma and metasedimentary rocks. It requires additional characterization. The overlying far-travelled nappes do not correlate well. The metasedimentary Revseggi nappe in Røldal is affected by a Taconian metamorphism (470–450 Ma) and hosts c. 434–428 Ma felsic intrusives (Roffeis & Corfu, 2014). Detrital zircons (n=33) in a kyanite-mica-gneiss sample constrain deposition of the sequence after c. 890 Ma. The Revseggi nappe may correlate with the Sola nappe. In Nedstrand, a c. 932 Ma augen gneiss is overlain by amphibolite and mica schist, tentatively attributed to the Boknafjord nappe. Detrital zircon data (n=11) imply an Ordovician (<459 Ma) deposition, therefore refuting a correlation of this transect with the Sola nappe.<br>The Sola nappe exposes a far-travelled Tonian marine volcanic-sedimentary sequence. The Taconian metamorphism suggests an evolution in the Iapetus ocenic realm. The Sola sequence may represent the microcontinent onto which the Karmøy ophiolite complex (c. 493–470 Ma) was obducted. By analogy to several other Tonian sequences preserved in far-travelled allochthons in the Scandinavian and Greenland Caledonides, the Sola sequence may originate from the active Neoproterozoic Renlandian margin of Laurentia and Rodinia before opening of Iapetus.</p>


2020 ◽  
Vol 50 (1) ◽  
pp. 517-548 ◽  
Author(s):  
David G. Gee ◽  
Iwona Klonowska ◽  
Per-Gunnar Andréasson ◽  
Michael B. Stephens

AbstractNappes of continental outer and outermost margin affinities (Middle Allochthon) were transported from locations west of the present Norwegian coast and thrust eastwards onto the Baltoscandian foreland basin and platform. They are of higher metamorphic grade than underlying thrust sheets and most are more penetratively deformed. These allochthons are treated here in three groups. The lower thrust sheets comprise Paleoproterozoic crystalline basement (e.g. Tännäs Augen Gneiss Nappe) and greenschist facies, Neoproterozoic, siliciclastic metasedimentary rocks (e.g. Offerdal Nappe). These are overthrust by a Cryogenian−Ediacaran succession intruded by c. 600 Ma dolerites (Baltoscandian Dyke Swarm) with an affinity to mid-ocean ridge basalt containing normal to enriched incompatible element contents (Särv Nappes). The upper sheets are dominated by higher-grade allochthons (Seve Nappe Complex) with similar, mainly siliciclastic sedimentary protoliths, more mafic magmatism and some solitary ultramafic bodies. Within this early Ediacaran continent−ocean transition zone (COT) assemblage, generally metamorphosed in amphibolite facies, some nappes experienced migmatization, and eclogites are present. Evidence of ultrahigh-pressure metamorphism has been obtained from garnet peridotites and eclogites; recently, microdiamonds have been discovered in paragneisses. Subduction of the COT started by the late Cambrian and accretion continued through the Ordovician, prior to the Baltica–Laurentia collision. Thrusting of all these Middle allochthons onto the foreland basin exceeds a distance of 400 km.


2020 ◽  
Vol 50 (1) ◽  
pp. 481-494 ◽  
Author(s):  
David G. Gee ◽  
Michael B. Stephens

AbstractThe Scandian mountains in northwestern Sweden are dominated by the eastern part of the Scandinavian Caledonides, an orogen that terminated during the middle Paleozoic with Himalayan-style collision of the ancient continents of Baltica and Laurentia. In this foreland region, far-transported higher allochthons from an exotic continental margin (Rödingsfjället Nappe Complex) and underlying mostly oceanic-arc basin character (Köli Nappe Complex) were emplaced at least 700 km onto the Baltoscandian margin of Baltica. The thrust sheets below the Iapetus Ocean terranes were derived from the transition zone to Baltica (Seve Nappe Complex), comprising mainly siliciclastic metasedimentary rocks, hosting abundant metamorphosed c. 600 Ma mafic intrusions. They preserve evidence of subduction (eclogites, garnet peridotites and microdiamonds in host paragneisses), starting in the late Cambrian; exhumation continued through the Ordovician. Underlying allochthons derived from the outer margin of Baltica are less-metamorphosed Neoproterozoic sandstone-dominated successions, also intruded by Ediacaran dolerite dykes (Särv Nappes); they are located tectonically above similar-aged metasandstone and basement slices, devoid of dykes (Offerdal and Tännäs Augen Gneiss nappes and equivalents). Lowermost allochthons (Jämtlandian Nappes and equivalents), from the inner Baltoscandian margin, provide evidence of Cryogenian rifting, Ediacaran–Cambrian drifting and platformal sedimentation, followed by foreland basin development in the Ordovician and Silurian.


2019 ◽  
Vol 58 ◽  
pp. 89-96
Author(s):  
Jharendra K.C. ◽  
Kabi Raj Paudyal

The distribution of Ulleri Augen Gneiss and its origin in the Lesser Nepal Himalaya adjacent to the Main Central Thrust zone is stilla debate among the geo-scientists. Geological mapping was carried out along the Syaprubesi-Chhyamthali area of central Nepal with the aim to study the field relation, distribution, deformation and metamorphism of the Ulleri Augen Gneiss. During mapping, close traverses were set to observe the field relation and a number of systematic samples were collected for analysis of composition and texture. Some preliminary findings were obtained related to its geological position and distribution. This gneiss is hosted within the Kuncha Formation, the oldest unit of the Nawakot Group in the Lesser Himalaya. It has been evolved within this unit as a tabular form in some places and lenses in other places. It shows both concordant (i.e., sill type) and discordant (i.e., dike type) relationship with the host rock. It is characterized by augen-shaped porphyroblasts of K-feldspar and S-C mylonitic texture showing top to the SW sense of shear. The S-C structures and lineated textures shown by the minerals are associated with the shearing caused by the movement along the MCT during the syn-MCT metamorphic deformation. It is characterized in different types of lithologies such as augen gneiss, banded gneiss and two-mica gneiss. An attempt is made to explain the petrological characteristics and field relation of the Ulleri Augen Gneiss with the host rocks along with structural aspects. Based on the field relation and texture analysis, the evolution of the protolith of this Ulleri Augun Gneiss can be interpreted as a multi-story emplacement within the host rocks during and immediately after the sedimentation.


2019 ◽  
Vol 48 (1) ◽  
pp. 63-71
Author(s):  
Peter Marchev ◽  
Stoyan Georgiev ◽  
Raya Raicheva ◽  
Milan Ichev

This short communication reports a 251.4 ± 6.8 Ma age of a Permo-Triassic metagranitoid (augen gneiss) in the Bulgarian part of the Eastern Rhodopes. The rock is intruded by the early Eocene Drangovo pluton and represents part of the upper metamorphic unit of the Kessebir dome. The analyzed sample has slightly peraluminous (ASI = 1.11) granitic composition with SiO2 = 70.6 wt.%. It is enriched in LILE and LREE and depleted in HREE, with a deep Eu (Eu/Eu* = 0.49) anomaly consistent with garnet and plagioclase fractionation. The large number of xenocrystic zircons, along with the low (780 °C) crystallization temperature and petrochemical data, suggests significant assimilation of basement rocks by the granitic magma. The rock has a subduction-related signature.


Sign in / Sign up

Export Citation Format

Share Document