Preparation and Anticancer Effect of Flufenamic Acid-loaded Chitosan Nanoparticle

Polymer Korea ◽  
2021 ◽  
Vol 45 (5) ◽  
pp. 680-687
Author(s):  
Jun-Hyuk Anh ◽  
Jae-Woon Nah ◽  
Gyeong-Won Jeong
RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41393-41400 ◽  
Author(s):  
Zhenqing Hou ◽  
Jinyan Lin ◽  
Yanxiu Li ◽  
Fuqiang Guo ◽  
Fei Yu ◽  
...  

Surface functionalization of a PEGylated chitosan nanoparticle with dual-acting methotrexate drives a tumor-targeting effect and also introduces an anticancer effect.


1979 ◽  
Author(s):  
L Miles ◽  
J Burnier ◽  
M Verlander ◽  
M Goodman ◽  
A Kleiss ◽  
...  

Flu-HPA is one of a series of flufenamic acid derivations that enhances plasminogen-dependent clot lysis in vitro. Studies of possible mechanisms of action of Flu-HPA were undertaken. The influence of Flu-HPA on the inhibition of purified plasmin by purified PI was studied. PI activity was assessed by its inhibition of the clevage of the tripeptide S-2251 (H-D-Val-Leu-Lys-pNA) by plasmin. Flu-HPA was dissolved in DMF or in methonol and preincubated with PI before addition of plasmin. At Flu-HPA concentrations greater than 1mM and up to 60mM, the inhibitory activity of PI was totally lost. The inhibitory effect of normal human plasma on plasmin was also completely abolished at concentrations of Flu-HPA between 2.5 and 40mM. The effect of Flu-HPA on the inhibition of purified plasma kallikrein by purified CI-Inh was also studied. CI-Inh activity was measured by its inhibition of cleavage of the tripeptide Bz-Pro-Phe-Arg-pNA by kallikrein. When Flu-HPA, dissolved in DMF or in methonol, was preincubated with CI-Inh, a concentration dependent inhibition of CI-Inh activity was observed. CI-Inh activity was abolished by concentrations of Flu-HPA greater than 1mM. Flu-HPA also inhibited the activity of CI-Inh on purified Factor XIIa. These observations suggest that this flufenamic acid derivative may enhance fibrinolysis not only by inhibiting PI activity but also by decreasing the inactivation of plasminogen activators by CI-Inh.


2014 ◽  
pp. 98-101
Author(s):  
Thi Bich Hien Le ◽  
Viet Duc Ho ◽  
Thi Hoai Nguyen

Nowadays, cancer treatment has been a big challenge to healthcare systems. Most of clinical anti-cancer therapies are toxic and cause adverse effects to human body. Therefore, current trend in science is seeking and screening of natural compounds which possess antineoplastic activities to utilize in treatment. Uvaria L. - Annonaceae includes approximately 175 species spreading over tropical areas of Asia, Australia, Africa and America. Studies on chemical compositions and pharmacological effects of Uvaria showed that several compound classes in this genus such as alkaloid, flavonoid, cyclohexen derivaties, acetogenin, steroid, terpenoid, etc. indicate considerable biological activities, for example anti-tumor, anti-cancer, antibacterial, antifungal, antioxidant, etc. Specifically, anti-cancer activity of fractions of extract and pure isolated compounds stands out for cytotoxicity against many cancer cell lines. This study provides an overview of anti-cancer activity of Uvaria and suggests a potential for further studies on seeking and developing novel anti-cancer compounds. Key words: Anti-cancer, Uvaria.


Author(s):  
سعيد مزعل موازي ◽  
يحيى فائق حسين ◽  
عبد المنعم دولاني ◽  
سيف يوسف عبدالله السويدي

Recently, many studies have been conducted to discover or improve cancers treatment. The current study aims to investigate the anticancer effect of thymoquinone, cordyceps, spirulina, ganoderma lucidium, poria cocos, and lion’s mane in four different concentrations 4, 8, 16, and 32 ug (equivalent to 1 mg/mL) in two different time treatments (48 and 96 hours) on human nasal epithelial cell line RPMI 2650. By using cell culture cytotoxicity techniques and assay, the highest anticancer effect on RPMI 2650 was obtained by thymoquinone. The lowest anticancer effect was demonstrated by poria cocos and cordyceps. However, these two medications showed higher anticancer effect when given in short-term treatment (48 hours) compared to long-term treatment (96 hours). Ganoderma lucidium and spirulina showed better impact than poria cocos, cordyceps, and lion’s mane in term of cells cytotoxicity. Mild to moderate antineoplastic effect was seen by utilizing lion’s mane treatment compared other drugs. Therefore, adopting a long-term treatment of high concentrations and doses of thymoquinone, cordyceps, spirulina, ganoderma lucidium, poria cocos, and lion’s mane can be more effective in the treatment of nasal cancer. In conclusion, these drugs were found to be a promising cancer remedy; therefore, they can be utilized as alternative treatment for nasal cancer or any other type of cancer therapy.


2017 ◽  
Vol 24 (5) ◽  
pp. 413-418
Author(s):  
Bin Liu ◽  
Miaomiao Zhang ◽  
Shuna Liu ◽  
Jie Ying ◽  
Jingjing Zhang ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. 1099-1111
Author(s):  
Uzma Salar ◽  
Khalid M. Khan ◽  
Almas Jabeen ◽  
Aisha Faheem ◽  
Farwa Naqvi ◽  
...  

Background: A number of non-steroidal anti-inflammatory drugs (NSAIDs) including aspirin, indomethacin, ibuprofen, flufenamic acid, and phenylbutazone are being clinically used to treat inflammatory disorders. These NSAIDs are associated with serious side effects such as gastric ulceration, nephrotoxicity, and bleeding. Therefore, the identification of potent and safe therapy for inflammatory disorders is still of great interest to the medicinal chemist. Methods: A series of varyingly substituted benzoyl, acetyl, alkyl ester, and sulfonate ester substituted coumarins 1-64 were screened for the inhibition of ROS, generated from zymosan activated whole blood phagocytes, using luminol-enhanced chemiluminescence technique. Results: Among all tested compounds, 8 (IC50 = 65.0 ± 3.1 μM), 24 (IC50 = 41.8 ± 1.5 μM), 26 (IC50 = 10.6 ± 2.8 μM), 28 (IC50 = 20.9 ± 1.5 μM), and 41 (IC50 = 4.6 ± 0.3 μM) showed good anti- inflammatory potential as compared to standard antiinflammatory drug ibuprofen (IC50 = 54.3 ± 1.9 μM). Specifically, compounds 24, 26, 28, and 41 showed superior activity than standard antiinflammatory drug. Furthermore, compounds 12 (IC50 = 219.0 ± 1.4 μM), 14 (IC50 = 216.5 ± 6.2 μM), 16 (IC50 = 187.4 ± 2.2 μM), and 20 (IC50 = 196.2 ± 2.0 μM) showed moderate ROS inhibitory activity. Limited SAR study revealed that the hydroxy-substituted compound showed better ROS inhibition potential in case of 3-benzoyl and 3-ethylester coumarin derivatives. Whereas, chloro substitution was found to be important in case of 3-acetyl coumarin derivatives. Similarly, in case of sulfonate ester, chloro, and nitro groups especially at positions -4 and -3 of ring “R” played vital role in ROS inhibition. Furthermore, cytotoxicity of all active compounds was also checked on NIH-3T3 cell line. Compounds 12, 14, and 20 were found to be non-cytotoxic. Whereas, 8, 16, 24, 26, 28, and 41 were found to be very weak cytotoxic as compared to standard cycloheximide (IC50 = 0.13 ± 0.02 μM). Conclusion: Identified ROS inhibitors offer the possibility of additional modifications that could give rise to lead structures for further research in order to obtain more potent, and safer antiinflammatory agent.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 571
Author(s):  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Majid Alhomrani ◽  
Abdulhakeem S. Alamri ◽  
Ibrahim M. El-Deen ◽  
...  

This research aimed to produce new 1-[(aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic acid derivatives and check their anticancer effect against the breast cancer MCF-7 cell line. The 2-oxo-1,2-dihydroquinoline-3-carboxylic acid (4) compound was obtained by hydrolyzing ethyl 2-oxo-1,2-dihydroquinoline-3-carboxylate (2) with thiourea and anhydrous potassium carbonate ethanol, which was then treated with ethyl 3-substituted 2-cyanoacrylates (6) in the presence of triethylamine in diethyl formamide to give 1-[2-(ethoxy)carbonyl-2-cyano-1-arylvinyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic (7a,d). Cyclization of compound 7 with hydrazine hydrate ethanol inferred the association of 1-[(aryl)(3 amino-5-oxopyrazolidin-4-ylidene)methyl-2-oxo-1,2-dihydroquinol-3-carboxylates (8a,d). Spectroscopic and micro-analytical techniques such as IR, NMR, and elemental analysis were used to validate the structure of the synthesized organic compounds. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested by using the MTT assay on the MCF-7 cell line. When compared to the reference compound Dox, the compounds 7b, 7c, 8a, 8b, and 8c demonstrated strong anticancer activity against the MCF-7 cell line. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested against the MCF-7 cell line, using MTT assay. The compounds 7b, 7c, 8a, 8b, and 8c showed significant anticancer activity compared to the reference compound Dox against the MCF-7 cell line.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Sign in / Sign up

Export Citation Format

Share Document