Recognizing tide- and wave-dominated compound deltaic clinothems in the rock record

Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1149-1153
Author(s):  
Yang Peng ◽  
Cornel Olariu ◽  
Ronald J. Steel

Abstract Many modern deltas exhibit a compound geometry that consists of a shoreline clinoform and a larger subaqueous clinoform connected through a subaqueous platform. Despite the ubiquity of compound clinoforms in modern deltas, very few examples have been documented from the ancient sedimentary record. We present recognition criteria for shelf compound-clinoform systems in both tide- and wave-dominated deltas by integration of ancient and modern examples from multiple types of data. The compound clinothem can be identified by using a combination of: (1) the three-dimensional (3-D) configuration identified in bathymetric or seismic data, (2) bipartite stacked regressive units, consisting of a lower muddy coarsening-to-fining-upward (CUFU) or coarsening-upward (CU) unit (30–100 m thick) and an overlying sandier CU unit (5–30 m thick) (together they represent the subaqueous and shoreline clinoform pair), and (3) distinct facies described herein, though both types of delta have highly bioturbated mudstone and siltstone bottomsets. Tide-dominated deltas have muddy foresets with tidal scours containing tidal rhythmites or inclined heterolithic strata in the subaqueous clinothem overlain by river and tidal deposits of the shoreline clinothem. Wave-dominated deltas show mainly wave-enhanced sediment-gravity-flow (WSGF) beds and some thin hummocky/swaley cross-stratified (HCS/SCS) sandstones toward the top in the subaqueous muddy foreset, and upward-thickening HCS/SCS and trough/planar cross-bedded sandstones interbedded with siltstones in the shoreline clinothem. The subaqueous platform, which links the clinoform couplet, shows evidence of frequent tidal or wave reworking and redeposition. The platform in tide-dominated deltas is characterized by tide-generated heterolithic strata (e.g., bidirectional current-rippled and cross-stratified sandstones, spring and neap tidal bundles, tidal rhythmites) with occasional storm-wave–influenced strata. In contrast, the wave-dominated platform comprises small-scale swales with scours and mud clasts and some WSGF deposits. The proposed criteria can aid in the recognition of compound deltaic clinothems in other basins, particularly those with limited amounts and/or types of data.

AAPG Bulletin ◽  
2018 ◽  
Vol 102 (09) ◽  
pp. 1703-1737
Author(s):  
Gregory S. Hurd ◽  
Charles Kerans ◽  
Edmund L. Frost ◽  
J. Antonio Simo ◽  
Xavier Janson

Geology ◽  
2020 ◽  
Author(s):  
Jaco H. Baas ◽  
Jim Best ◽  
Jeff Peakall

Sediment gravity flows demonstrate a wide range of rheological behaviors, and past work has shown how transformations between flow types generate spatiotemporal changes in the resultant sedimentary successions. We used the geometrical characteristics of a single climbing ripple to demonstrate how such flows can transform from a turbulent to a quasi-laminar plug flow, with the transitional clay flow sequence being manifested by abnormally large heterolithic sand-clay current ripples with small backflow ripples, and then abundant clay deposition associated with smaller ripples. Analysis of ripple size, angle of climb, grain size, internal erosional surfaces, and soft-sediment deformation suggests that transformation in the rheological character of the sediment gravity flow was rapid, occurring over a period of tens of minutes, and thus probably over a spatial scale of hundreds of meters to several kilometers. Our study indicates how the character of flow transformation can be elucidated from the details of a small-scale sedimentary structure.


2020 ◽  
Vol 23 (1-2) ◽  
pp. 1-17 ◽  
Author(s):  
Franck R.A DELPOMDOR ◽  
Archange M. ILAMBWETSI ◽  
Fabricío A. CAXITO ◽  
Antonio C. PEDROSA-SOARES

Along the preserved southeast border (i.e., the Sete Lagoas High) of the Bambuí basin, the Pedro Leopoldo Member, basal succession of the Sete Lagoas Formation, unconformably overlies the Archean basement, and mostly includes carbonates with thin pelite intercalations and rare ruditic deposits. One of these, the so-called Carrancas conglomerate in its type-section, has been considered one of the lowermost rudite deposits of the Bambuí basin, being frequently ascribed to a Neoproterozoic glaciation. However, our detailed study, based on facies analysis, reveals that the Carrancas conglomerate was deposited by sediment gravity flow currents within the basal Pedro Leopoldo Member. Two outcrop sections in the São José de Lapa and Vespasiano areas, including thirteen abandoned quarry-cut and cliff outcrops, display eight distinct lithofacies (LF1 to LF8) forming a shallowing-upward carbonate ramp succession. It is composed, from the base to the top, by a mixed siliciclastic-carbonate outer ramp distally bounded by a slope-outer ramp system with sediment gravity flow deposits, a deep outer ramp developed below storm-wave base environments, an outer-middle ramp with aragonite pseudomorph crystal fans developed in a CaCO3 oversaturated below storm-wave base environment in suboxic/anoxic conditions. According to published isotope data correlating δ13C trends and values in basal carbonates of the Pedro Leopoldo Member of the Sete Lagoas and Januária highs, the relatively deep outer-slope ramp mixed siliciclastic-carbonate units of the study area appear to be coeval in age with the cap dolostone of shallow-water inner ramp of the Januária High. The absence of a cap dolostone in the Sete Lagoas High could be explained by lack of accommodation space or a regional erosion due to the tectonically driven forebulge uplift of the Sete Lagoas High. The Pedro Leopoldo Member in the Sete Lagoas High was accumulated in a brine-seawater bottom waters under suboxic/anoxic conditions in the relatively deeper portion of the carbonate ramp system, whilst the cap dolostone in the Januária High was developed in oxygenated mixed layer and intermediate water near the surface water in the shallower portion of the carbonate ramp system. Such lateral variations of facies and δ13C fluctuations are similar to those recorded by the cap carbonate sequences of the basal Schisto-Calcaire/Lukala (Sub)Group in the West Congo Belt and the basal Araras Group in the Paraguay Belt, which display a similar wide range of sub-environments like the studied part of the Pedro Leopoldo Member.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


1996 ◽  
Vol 328 ◽  
pp. 345-407 ◽  
Author(s):  
C. H. K. Williamson

It is now well-known that the wake transition regime for a circular cylinder involves two modes of small-scale three-dimensional instability (modes A and B), depending on the regime of Reynolds number (Re), although almost no understanding of the physical origins of these instabilities, or indeed their effects on near-wake formation, have hitherto been made clear. We address these questions in this paper. In particular, it is found that the two different modes A and B scale on different physical features of the flow. Mode A has a larger spanwise wavelength of around 3–4 diameters, and scales on the larger physical structure in the flow, namely the primary vortex core. The wavelength for mode A is shown to be the result of an ‘elliptic instability’ in the nearwake vortex cores. The subsequent nonlinear growth of vortex loops is due to a feedback from one vortex to the next, involving spanwise-periodic deformation of core vorticity, which is then subject to streamwise stretching in the braid regios. This mode gives an out-of-phase streamwise vortex pattern.In contrast, mode-B instability has a distinctly smaller wavelength (1 diameter) which scales on the smaller physical structure in the flow, the braid shear layer. It is a manifestation of an instability in a region of hyperbolic flow. It is quite distinct from other shear flows, in that it depends on the reverse flow of the bluff-body wake; the presence of a fully formed streamwise vortex system, brought upstream from a previous half-cycle, in proximity to the newly evolving braid shear layer, leads to an in-phase stream-wise vortex array, in strong analogy with the ‘Mode 1’ of Meiburg & Lasheras (1988) for a forced unseparated wake. In mode B, we also observe amalgamation of streamwise vortices from a previous braid with like-sign vortices in the subsequent braid.It is deduced that the large scatter in previous measurements concerning mode A is due to the presence of vortex dislocations. Dislocations are triggered at the sites of some vortex loops of mode A, and represent a natural breakdown of the periodicity of mode A instability. By minimizing or avoiding the dislocations which occur from end contamination or which occur during wake transition, we find an excellent agreement of both critical Re and spanwise wavelength of mode A with the recent secondary stability analysis of Barkley & Henderson (1996).Wake transition is further characterized by velocity and pressure measurements. It is consistent that, when mode-A instability and large-scale dislocations appear, one finds a reduction of base suction, a reduction of (two-dimensional) Reynolds stress level, a growth in size of the formation region, and a corresponding drop in Strouhal frequency. Finally, the present work leads us to a new clarification of the possible flow states through transition. Right through this regime of Re, there exist two distinct and continuous Strouhal frequency curves: the upper one corresponds with purley small- scale instabilities (e.g. denoted as mode A), while the lower curve corresponds with a combination of small-scale plus dislocation structures (e.g. mode A*). However, some of the flow states are transient or ‘unstable’, and the natural transitioning wake appears to follow the scenario: (2D→A*→B).


Sign in / Sign up

Export Citation Format

Share Document