color morph
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Carlos A. Antolínez ◽  
Krzysztof Szejbak ◽  
Kerry E. Mauck ◽  
Monique J. Rivera

AbstractThe Asian citrus psyllid (ACP) Diaphorina citri (Hemiptera:Liviidae), vector of huanglongbing disease, displays a high degree of color polyphenism. In the adult stage, ACP exhibits abdominal colors that can be separated into three color groupings: blue-green, grey-brown and orange-yellow. Color morphology has been shown to influence important and energetically costly psyllid life traits including reproduction, dispersion, immune defense and resistance to insecticides. Despite this, it remains unclear how color morphology is correlated with feeding behavior. Understanding variation in feeding behavior of the ACP color morphs is critical to better understanding how ACP populations utilize host-plants and to assess potential risk for transmission of the causal agent of huanglongbing disease. We compared the feeding behavior of the three ACP color morphs by using electropenetrography (EPG). We did not detect differences in the feeding behavior activities at phloem or xylem tissues when comparing the three-color morphs. Furthermore, there were no differences in feeding behavioral parameters before reaching phloem or xylem tissues. Our results suggest energy requirements are similar between color morphs and feeding behavior parameters associated with CLas transmission are potentially similar between color morphs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261202
Author(s):  
Chelsea L. Wood ◽  
Katie L. Leslie ◽  
Alanna Greene ◽  
Laurel S. Lam ◽  
Bonnie Basnett ◽  
...  

The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host–parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism–an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.


2021 ◽  
Author(s):  
Kinsey M Brock ◽  
Indiana E. Madden

Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard, Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized intrusion event. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both of the populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs, select different refuge types, and re-emerge less often after an intruder event compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Nicholas A. Federico ◽  
David C. Blackburn ◽  
Robert P. Guralnick

AbstractColor polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus, which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change.


Author(s):  
Swanne Gordon ◽  
Emily Burdfield-Steel ◽  
Jimi Kirvesoja ◽  
Johanna Mappes

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10798
Author(s):  
Roisin A. Stanbrook ◽  
W. Edwin Harris ◽  
Charles P. Wheater ◽  
Martin Jones

Background High altitude insects are an ecologically specialized group and possess a suite of adaptions which allow persistence in the inhospitable conditions often associated with mountain tops. Changes in body coloration and reductions or increases in body size are thought to be examples of such adaptions. Melanic individuals, or individuals containing high levels of eumelanin, possess several traits which increase resistance to ultraviolet radiation and desiccation, while aiding thermoregulation. Trait variation is often observed in dung beetles and is associated with dimorphism and sexual selection. In this study, we identified trait changes which occur across an altitudinal gradient by measuring morphological color and body size traits in a montane insect. Methods Using standard digital photography and Image J, we examined individuals of Afromontane dung beetle Onthophagus proteus. Individuals were classified according to sex and color morph to identify intrasexual variance. Nine morphometric traits were measured per beetle to identify patterns of morphology across discrete 500 m altitude segments. Results The results of this study provide one of the first descriptions of trait changes associated with elevation in an African dung beetle. We suggest that color polymorphism in Onthophagus proteus might be at least partly driven by environmental factors as there is significantly increased melanism with increasing elevation and significant differences in color hues between altitude bands. We also suggest changes in horn length are density dependent, as we observed an increase in cephalic horn length at high elevations where O. proteus is the most abundant species.


ZooKeys ◽  
2020 ◽  
Vol 1008 ◽  
pp. 107-138
Author(s):  
Emily P. McFarland ◽  
Carole C. Baldwin ◽  
David Ross Robertson ◽  
Luiz A. Rocha ◽  
Luke Tornabene

Initially described in 1882, Chromis enchrysurus, the Yellowtail Reeffish, was redescribed in 1982 to account for an observed color morph that possesses a white tail instead of a yellow one, but morphological and geographic boundaries between the two color morphs were not well understood. Taking advantage of newly collected material from submersible studies of deep reefs and photographs from rebreather dives, this study sought to determine whether the white-tailed Chromis is actually a color morph of Chromis enchrysurus or a distinct species. Phylogenetic analyses of mitochondrial genes cytochrome b and cytochrome c oxidase subunit I separated Chromis enchrysurus and the white-tailed Chromis into two reciprocally monophyletic clades. A principal component analysis based on 27 morphological characters separated the two groups into clusters that correspond with caudal-fin coloration, which was either known or presumed based on the specimen’s collection site according to biogeographic data on species boundaries in the Greater Caribbean. Genetic, morphological, and biogeographic data all indicate that the white-tailed Chromis is a distinct species, herein described as Chromis vanbebberaesp. nov. The discovery of a new species within a conspicuous group such as damselfishes in a well-studied region of the world highlights the importance of deep-reef exploration in documenting undiscovered biodiversity.


Sign in / Sign up

Export Citation Format

Share Document