scholarly journals Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 503
Author(s):  
Roxane Tremblay ◽  
Julien Walter ◽  
Romain Chesnaux ◽  
Lamine Boumaiza

The hydrogeochemical study of the Lanaudière and Eastern Mauricie regions (Canada) demonstrates that trace elements appear to be better tracers of geological influence on groundwater chemistry than major elements. Isotopic ratios and the similar chemical composition of groundwater suggest that the physicochemical parameters of groundwater have a greater effect on hydrogeochemical mechanisms than the immediate geological environment The results allow us to propose a conceptual model of groundwater geochemical evolution with the aim to guide the protection and sustainable management of regional groundwater resources in the Lanaudière and Eastern Mauricie regions. These regions were selected because of their location at the boundary of the Grenville and St. Lawrence Platform geological provinces, representing two distinct geological contexts (Precambrian crystalline rocks and Paleozoic sedimentary rocks). Regional-scale hydrogeochemical and isotopic groundwater characterization was carried out to identify the role of the differences in regional geology on groundwater quality. Our analyses included major and trace elements, stable isotopes, and multivariate statistics. Similar processes are at the origin of dissolved major chemical elements and suggest that soluble minerals common to both geological provinces control groundwater chemistry. If differences exist, they are due to the hydrogeological conditions of the samples, such as residence time or groundwater entrapment at the time of the postglacial marine incursion of the Champlain Sea, rather than the geological context. Some differences, sometimes significant, were observed for some minor elements (F−, Mn2+, H2S), which implies a more comprehensive knowledge of the chemistry of the stratigraphic units within the Lanaudière and Eastern Mauricie aquifers.

2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Larry Pax Chegbeleh ◽  
Bismark Awinbire Akurugu ◽  
Sandow Mark Yidana

A comprehensive chemical quality assessment of groundwater resources in the Talensi District has been conducted using conventional graphical methods and multivariate statistical techniques. The study sought to determine the main controls of groundwater chemistry and its suitability for domestic and irrigation purposes in the district. Silicate and carbonate mineral weathering were identified as the main controls on groundwater chemistry in the district, with reverse ion exchange also playing a role. High nitrate and lead levels observed have been associated with agrochemicals and wastewater from farms and homes. Three main flow regimes have been identified with Q-mode cluster analysis, in which mixed cation water types have been revealed, where areas designated as recharge zones are dominated by Na+ + K+–Mg2+–HCO3− fresh water types characterised by low mineralisation and pH, which evolve into Mg2+– Na+ + K+– HCO3− fresh water type with corresponding increased mineralisation of the groundwater. Based on the water quality index (WQI) technique modified for the district and an interpolation technique using ordinary kriging developed from a well-fitted exponential semivariogram for the estimated WQIs, the groundwater quality has been spatially classified as generally ‘good’ to ‘excellent’ for domestic purposes. Generally, the quality of groundwater for domestic usage deteriorates as one moves towards the north of the district, whereas waters in the east and west present the best quality. Classifications based on the United States Salinity Laboratory (USSL), Wilcox, and Doneen diagrams suggest that groundwater from the unconfined aquifers of the district is of excellent quality for irrigation purposes.


1996 ◽  
Vol 76 (3) ◽  
pp. 385-392
Author(s):  
J. J. Miller ◽  
B. J. Read ◽  
D. J. Wentz ◽  
D. J. Heaney

Plant samples were collected from 102 saline sites in Alberta from 1990 to 1993 to determine major element and trace element concentrations in relation to mineral requirements for beef cattle. Zinc concentrations were most frequently (94%) below the minimum requirement for beef cattle, followed by Cu (92%), Se (87%), Na (49%), Mn (29%), K (21%), Mg (3%), Fe (1%) and S (1%). The element most frequently exceeding the maximum tolerable level for beef cattle was S (20%), followed by Mg (17%), Al (5%), Fe (5%) and Mo (1%). Beef cattle consuming plants from saline areas of Alberta are more likely to experience potential deficiencies than toxicities of chemical elements required for adequate nutrition. Key words: Major elements, trace elements, plants, saline areas, mineral requirements, beef cattle


Author(s):  
Monika Gąsecka ◽  
Marek Siwulski ◽  
Sylwia Budzyńska ◽  
Zuzanna Magdziak ◽  
Przemysław Niedzielski ◽  
...  

AbstractDue to the use of various substrates in the production of edible mushrooms which may contain metals, including Cu and Pb, it is important to understand the influence of mutual interactions between them in the process of their accumulation in fruit bodies. For this reason, the effects of Cu, Pb, and Cu × Pb on yield, accumulation of five major elements (Ca, K, Mg, Na and P), trace elements (Cu, Pb and Fe) and some bioactive compounds in Lentinula edodes fruit bodies were studied. Both the metals were added in doses of 0.1 and 0.5 mM (Cu0.1, Cu0.5, Pb0.1, Pb0.5 and their combinations). The addition of the metals resulted in a reduction in size, amount and finally yield of fruit bodies. Depending on the presence of Cu and or Pb and their concentration in the substrate, both antagonism and synergism may occur. The influence on the accumulation of other determining elements was also recorded. Among phenolic compounds, phenolic acids and flavonoids were detected. 2,5-Dihydroxybenzoic acid dominated in fruit bodies in the control variant, Pb0.1, Pb0.5 and all experimental variants enriched with Cu + Pb, while gallic acid was the major phenolic after Cu0.1 and Cu0.5 addition. Only protocatechuic acid content increased in all combinations. A significant decrease of all aliphatic acid contents in comparison to the control variant was observed in the Cu0.1 and Pb0.1 variants. Significant stimulation of aliphatic acid synthesis was recorded in Cu0.5 and Pb0.5 variants and in the mixture of both the metals. The additions pointed to the possible role of the determined molecules in detoxification mechanisms.


Author(s):  
Alla Savenko ◽  
Alla Savenko ◽  
Oleg Pokrovsky ◽  
Oleg Pokrovsky ◽  
Irina Streletskaya ◽  
...  

The distribution of dissolved chemical elements (major ions, nutrients, and trace elements) in the Yenisei River estuary and adjacent water area in 2009 and 2010 are presented. These results were compared to the data obtained during previous hydrochemical studies of this region. The transport of major cations (Na, K, Mg, Ca) and some trace elements (Rb, Cs, Sr, B, F, As, Mo, U) in the estuary follows conservative mixing. Alkalinity also belongs to conservative components, however this parameter exhibits substantial spatial heterogeneity caused by complex hydrological structure of the Yenisei Bay and adjoining part of the Kara Sea formed under the influence of several sources of desalination and salty waters inflow. Concentrations of Pmin, Si, and V in the desalinized waters of photic layer decrease seaward owing to uptake by phytoplankton. The losses of these elements reach 30–57, 30, and 9% of their supply by river runoff, respectively. The content of dissolved phosphates and vanadium in the intermediate and near-bottom layers of the Yenisei River estuary strongly increases with salinity due to regeneration of precipitated organic matter, whereas silica remineralization is much less pronounced. Barium is characterized by additional input of dissolved forms in the mixing zone in the quantity comparable to that carried out by river runoff. This may be caused by its desorption from river suspended matter due to ion exchange. The transport of dissolved Al and Mn in the estuarine zone is probably controlled by the coagulation and flocculation of organic and organomineral colloids, which is indicated by a decrease in the concentration of these elements at the beginning of the estuary (31 and 56%, respectively) followed by a stable concentration further seaward.


Author(s):  
Hasan Eroğlu ◽  
Gökçen Örgül ◽  
Nazan Vanlı Tonyalı ◽  
Derya Biriken ◽  
Naci Polat ◽  
...  

2020 ◽  
Vol 42 (2) ◽  
pp. 18-21
Author(s):  
Juris Meija ◽  
Javier Garcia-Martinez ◽  
Jan Apotheker

AbstractIn 2019, the world celebrated the International Year of the Periodic Table of Chemical Elements (IYPT2019) and the IUPAC centenary. This happy coincidence offered a unique opportunity to reflect on the value and work that is carried out by IUPAC in a range of activities, including chemistry awareness, appreciation, and education. Although IUPAC curates the Periodic Table and oversees regular additions and changes, this icon of science belongs to the world. With this in mind, we wanted to create an opportunity for students and the general public to participate in this global celebration. The objective was to create an online global competition centered on the Periodic Table and IUPAC to raise awareness of the importance of chemistry in our daily lives, the richness of the chemical elements, and the key role of IUPAC in promoting chemistry worldwide. The Periodic Table Challenge was the result of this effort.


2020 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Richard Viskup ◽  
Yana Vereshchaga ◽  
Anna Theresia Stadler ◽  
Theresa Roland ◽  
Christoph Wolf ◽  
...  

Pollutant emissions from vehicles form major sources of metallic nanoparticles entering the environment and surrounding atmosphere. In this research, we spectrochemically analyse the chemical composition of particle matter emissions from in-use diesel engine passenger vehicles. We extracted diesel particulate matter from the end part of the tail pipes of more than 70 different vehicles. In the laboratory, we used the high-resolution laser-induced breakdown spectroscopy (LIBS) spectrochemical analytical technique to sensitively analyse chemical elements in different DPM samples. We found that PM is composed of major, minor and trace chemical elements. The major compound in PM is not strictly carbon but also other adsorbed metallic nanoparticles such as iron, chromium, magnesium, zinc and calcium. Besides the major elements in DPM, there are also minor elements: silicon, nickel, titan, potassium, strontium, molybdenum and others. Additionally, in DPM are adsorbed atomic trace elements like barium, boron, cobalt, copper, phosphorus, manganese and platinum. All these chemical elements form the significant atomic composition of real PM from in-use diesel engine vehicles.


Sign in / Sign up

Export Citation Format

Share Document