Earth Science, Systems and Society
Latest Publications


TOTAL DOCUMENTS

4
(FIVE YEARS 4)

H-INDEX

0
(FIVE YEARS 0)

Published By Frontiers Media SA

2634-730x

2021 ◽  
Vol 1 ◽  
Author(s):  
A. P. M. Velenturf ◽  
A. R. Emery ◽  
D. M. Hodgson ◽  
N. L. M. Barlow ◽  
A. M. Mohtaj Khorasani ◽  
...  

Low carbon energy infrastructure, such as wind and solar farms, are crucial for reducing greenhouse gas emissions and limiting global temperature rise to 1.5°C. During 2020, 5.2 GW of offshore wind capacity went into operation worldwide, taking the total operational capacity of global offshore wind to 32.5 GW from 162 offshore windfarms, and over 200 GW of new capacity is planned by 2030. To meet net-zero targets, growth of offshore wind generation is expected, which raises new challenges, including integration of offshore wind into the natural environment and the wider energy system, throughout the wind farm lifecycle. This review examines the role of geosciences in addressing these challenges; technical sustainability challenges and opportunities are reviewed, filtered according to global governance priorities, and assessed according to the role that geoscience can play in providing solutions. We find that geoscience solutions play key roles in sustainable offshore wind energy development through two broad themes: 1) windfarm and infrastructure site conditions, and 2) infrastructure for transmission, conversion and energy storage. To conclude, we recommend priorities and approaches that will support geoscience contributions to offshore wind, and ultimately enable sustainable offshore wind development. Recommendations include industry collaboration and systems for effective data sharing and archiving, as well as further research, education and skills.


2021 ◽  
Vol 1 ◽  
Author(s):  
C. Lloyd ◽  
M. Huuse ◽  
B. J. Barrett ◽  
A. M. W. Newton

Subsurface CO2 storage is considered a key element of reducing anthropogenic emissions in virtually all scenarios compatible with limiting global warming to 1.5°C. The Utsira-Skade Aquifer (Utsira, Eir and Skade Formations), northern North Sea, has been identified as a suitable reservoir. Although the overall storage capacity of the full aquifer has been estimated based on regional data, it is lacking an integrated assessment of containment and internal heterogeneity, to identify optimal areas for injection and for calculation of site-specific storage capacities. A high-resolution, broadband 3D seismic reflection dataset, full waveform inverted velocity data and 102 exploration wells are utilised to provide a catalogue of CO2 storage prospects in the northern Utsira-Skade Aquifer. This is achieved through: 1) definition of the aquifer’s spatial limits; 2) calculation of porosity distribution; 3) assessment of the extent, geomorphology, thickness variability, and containment confidence (CC) of mudstones; and 4) mapping of closures through fill-to-spill simulations. CO2 storage capacity was calculated for the prospects using two approaches; using the full reservoir thickness (FRT) beneath the closures and using only the thickness from the closure top to the spill point (TSP), i.e., within structural traps. Porosity ranges from 29 to 39% across the aquifer and is higher in the Utsira and Eir Fms. relative to the underlying Skade Fm. The mudstone separating the Skade and Eir/Utsira Fm. has a thickness > 50 m, and is a potential barrier for CO2. Other intra-aquifer mudstones were mainly interpreted to act as baffles to flow. Structural traps at the top Utsira and Skade Fms. yield fifteen prospects, with criteria of > 700 m depth and FRT storage capacity of > 5 Mt CO2. They have a combined storage capacity of 330 Mt CO2 (FRT) or 196 Mt CO2 (TSP). Five prospects have a positive CC score (total capacity: 54 Mt CO2 FRT or 39 Mt CO2 TSP). Additional storage capacity could be achieved through more detailed analysis of the seal to upgrade the CC scores, or through use of a network of the mapped closures with a fill-to-spill approach, utilising more of the aquifer.


2021 ◽  
Vol 1 ◽  
Author(s):  
Muntaha Urooj ◽  
Roger Bilham ◽  
Bikram S. Bali ◽  
S. Imran Ahmed

In the mid-ninth century, an earthquake triggered a landslide that blocked the narrow gorge of the Jhelum River where it exits the Kashmir Valley. The landslide impounded a lake that extended ≈100 km along the floor of the valley, implying an impounded volume of ≤21 km3, flooding the capital, Srinagar, and much agricultural land. An engineered breach of the landslide was contrived by a Medieval engineer resulting in the catastrophic release of flood waters. Using reasonable assumptions we calculate the probable minimum drainage time of this Medieval flood (<4 days) and maximum downstream surge velocities (≈12 m/s). These would have been sufficient to transport boulders in the bed of the Jhelum with dimensions of ≈6 m, consistent with those currently present in some reaches of the river. Given the morphology of the Jhelum gorge we consider that landslide outburst floods may have been common in Kashmir’s history. Ancient shorelines indicate that paleo-lake volumes in the Kashmir Valley may have exceeded 400 km3 which, were they released in catastrophic floods, would have been associated with potential downstream outburst velocities >32 m/s, able to transport boulders with dimensions ≈40 m, far in excess of any found in the course of the Jhelum or in the Punjab plains. Their absence suggests that Kashmir’s ancient lakes were not lowered by outburst mechanisms much exceeding those associated with Suyya’s flood. Present-day floods have been many tens of meters shallower than those impounded by landslides in the Jhelum in the past several thousands of years. A challenge for future study will be to date Kashmir’s ancient shorelines to learn how often landslides and major impoundment events may have occurred in the valley.


2021 ◽  
Vol 1 ◽  
Author(s):  
J. J. Lindsay ◽  
H. S. R. Hughes ◽  
C. M. Yeomans ◽  
J. C. Ø. Andersen ◽  
I. McDonald

Large Igneous Provinces, and by extension the mantle plumes that generate them, are frequently associated with platinum-group element (PGE) ore deposits, yet the processes controlling the metal budget in plume-derived magmas remains debated. In this paper, we present a new whole-rock geochemical data set from the 135 Ma Paraná-Etendeka Large Igneous Province (PELIP) in the South Atlantic, which includes major and trace elements, PGE, and Au concentrations for onshore and offshore lavas from different developmental stages in the province, which underwent significant syn-magmatic continental rifting from 134 Ma onwards. The PELIP presents an opportunity to observe magma geochemistry as the continent and sub-continental lithospheric mantle (SCLM) are progressively removed from a melting environment. Here, we use an unsupervised machine learning approach (featuring the PCA, t-SNE and k-means clustering algorithms) to investigate the geochemistry of a set of (primarily basaltic) onshore and offshore PELIP lavas. We test the hypothesis that plume-derived magmas can scavenge precious metals including PGE from the SCLM and explore how metal concentrations might change the metal content in intraplate magmas throughout rifting. Onshore lavas on the Etendeka side of the PELIP are classified as the products of deep partial melts of the mantle below the African craton but without significant PGE enrichment. Offshore lavas on both continents exhibit similarities through the multi-element space to their onshore equivalents, but they again lack PGE enrichment. Of the four onshore lava types on the Paraná side of the PELIP, the Type 1 (Southern) and Type 1 (Central-Northern) localities exhibit separate PGE-enriched assemblages (Ir-Ru-Rh and Pd-Au-Cu, respectively). It follows that there is a significant asymmetry to the metallogenic character of the PELIP, with enrichment focused specifically on lavas from the South American continent edge in Paraná. This asymmetry contrasts with the North Atlantic Igneous Province (NAIP), a similar geodynamic environment in which continent-edge lavas are also PGE-enriched, albeit on both sides of the plume-rift system. We conclude that, given the similarities in PGE studies of plume-rift environments, SCLM incorporation under progressively shallowing (i.e., rifting) asthenospheric conditions promotes the acquisition of metasomatic and residual PGE-bearing minerals, boosting the magma metal budget.


Sign in / Sign up

Export Citation Format

Share Document