Journal of Enzymes
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 1)

Published By Open Access Pub

2690-4829

2020 ◽  
Vol 1 (2) ◽  
pp. 34-47
Author(s):  
Phillip Brumm ◽  
Phillip Brumm ◽  
Dan Xie ◽  
Larry Allen ◽  
Dan Xie ◽  
...  

Conversion of biomass into fermentable sugars is a major requirement for successful and cost-effective biofuels production. The conversion of xylan to sugars requires multiple enzymes including α-glucuronidase. Here we report the cloning, expression, purification and characterization of the α-glucuronidase from Dictyoglomusturgidum(DtuAgu). DtuAgu is an intracellular protein of 685 amino acids and a predicted molecular weight of 79.4 kD. Enzymatic activity was optimum between pH 7.0 and 8.0 and at 85°C. The specific activity of the enzyme was 10 u/mg when measured using mixed aldouronic acids. The specific activity on isolated glucuronoxylan was approximately 20% of the value obtained with xylooligosaccharides. DtuAgu significantly improved xylan conversion to xylose when evaluated using two mixtures of thermostable bacterial enzymes and two sources of xylan. DtuAgu has the potential to be a key player in thermostable enzyme cocktails for the conversion to biomass to biofuels.α


2020 ◽  
Vol 1 (1) ◽  
pp. 20-43 ◽  
Author(s):  
Palanivel Rameshthangam ◽  
Dhanasekaran Solairaj ◽  
Gnanapragasam Arunachalam ◽  
Palaniappan Ramasamy

Disposal of chitin wastes from crustacean shell can cause environmental and health hazards. Chitin is a well known abundant natural polymer extracted after deproteinization and demineralization of the shell wastes of shrimp, crab, lobster, and krill. Extraction of chitin and its derivatives from waste material is one of the alternative ways to turn the waste into useful products. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. The presence of surface charge and multiple functional groups make chitin as a beneficial natural polymer. Due to the reactive functional groups chitin can be used for the preparation of a spectrum of chitin derivatives such as chitosan, alkyl chitin, sulfated chitin, dibutyryl chitin and carboxymethyl chitin for specific applications in different areas. The present review is aimed to summarize the efficacy of the chitinases on the chitin and its derivatives and their diverse applications in biomedical and environmental field. Further this review also discusses the synthesis of various chitin derivatives in detail and brings out the importance of chitin and its derivatives in biomedical and environmental applications.


2020 ◽  
Vol 1 (2) ◽  
pp. 31-33
Author(s):  
G.M. Galoyan ◽  
P.A. Ghazaryan

The antioxidant and membrane resistant peculiarities of a new derivative (2-cyan-3,4,4-trymethil-2-buten-4-olyd - CTBO) of cyan containing unsaturated lactones have been studied in membranes of hepatocytes with Sarcoma-45 1. The results of our previous research 1, 2, 3 showed significant changes of phospholipid (PL) exchange in hepatocytes of microsomal membranes at experimental animals vaccinated with Sarcoma-45 tumor strain. It is manifested in significant changes of quantitative and qualitative contents of membrane phospholipids separate fractions, increase of cytotoxic lysophospholipids (LPCs), phosphatidylinositol (PI) and phosphatidic acid (PA) levels, significant decrease of phosphatitylcholines (PC) and sphingomyeline (SP) contents, statistically significant changes of PL/PL ratio, peroxidation ratio intensity, dramatic increase of phospholipase A2 (PLA2)activity, quantitative and qualitative changes of adenyl nucleotides, as well as disorders of adenosine triphosphatase (ATPase) system activity 3, 4, 5, 6, 7.


2019 ◽  
Vol 1 (2) ◽  
pp. 19-30
Author(s):  
Phillip Brumm ◽  
Phillip Brumm ◽  
Dan Xie ◽  
Dan Xie ◽  
Larry Allen ◽  
...  

Trichoderma reeseiβ-glucosidase (Bgl1) is one of four enzymes demonstrated to act synergistically to degrade cellulose both in vitro and in vivo. Our work attempted to better understand the substrate specificity and potential biotechnological applications of Bgl1. T. reesei Bgl1H cleaves over 80% of the β-(1-4) and β-(1-3) linkages in β-glucan and 14% of the β-(1-4) linkages in amorphous cellulose, significantly more than any tested bacterial β-glucosidase. Bgl1H cleaves 50% of the β-(1-4) linkages in xyloglucan when supplemented with cellulase and α-xyloside. Approximately 20% conversion to glucose was obtained from insoluble β-(1,3)-linked curdlan using only Bgl1H; addition of a curdlanase resulted in conversion of approximately 70% of the curdlan to glucose. Bgl1H also produces xylose from xylooligosaccharides and debranched xylans. For both glucans and xylans, the relative rates of hydrolysis increase with increasing polysaccharide chain lengths. Bgl1H is able to partially degrade β-glucan in a variety of grain components; addition of endo-acting enzymes improved the enzyme’s performance on these grain components. The ability of this enzyme to produce monosaccharides from undigestible polysaccharides suggest it may have potential in improving utilization of carbohydrates in animal feed, fermentations, and other biotechnological applications.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-18
Author(s):  
Wei Tang ◽  
Wei Tang ◽  
Yongjun Fei

Rooting of cuttings is very important for production of economically important plants. We produced thousands of plantlets in Taxus chinensisvar. mairei using the technology of rooting of cuttings and identified two types of rooted cuttings, one with low rate of root formation and another with high rate of root formation. To determine the physiological role of antioxidative enzymes and microRNAs during the process of rooting, we measured the levels of these antioxidative enzymes and microRNAs in the stem portion, needles, roots, and basal portion of cuttings. Compared to the cuttings with low rate of root formation, cuttings with high rate of root formation had higher expression of polyphenoloxidase (PPO), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) in the adventitious roots and basal portion of the rooted cuttings 77 days after planting. In the basal portion of cuttings, the content of thiobarbituric acid reactive substances (TBARS) and total phenols were decreased and the content of antioxidants was increased, but they did not changed in the needles of cuttings during planting. Analysis of microRNAs by quantitative realtime PCR demonstrated that expression of miR162, miR408, and miR857 increases in the basal portion of cuttings, but not in the stem portion of cuttings, 77 days after planting. Expression of miR408 and miR857 were also increased in the needles of cuttings 77 days after planting. Changes of these antioxidative enzymes and microRNAs associated with the rooting features of T. chinensisvar. maireicuttings and their functions have been discussed.


2018 ◽  
Vol 1 (1) ◽  
pp. 5-19
Author(s):  
Phillip Brumm ◽  
Phillip Brumm ◽  
Dan Xie ◽  
Dan Xie ◽  
Larry Allen ◽  
...  

The goal of this work was to clone, express, characterize and assemble a set of soluble thermostablecellulases capable of significantly degrading cellulose. We successfully cloned, expressed, and purified eleven Clostridium thermocellum (Cthe) cellulases and eight Acidothermuscellulolyticus(Acel) cellulases. The performance of the nineteen enzymes was evaluated on crystalline (filter paper) and amorphous (PASC) cellulose. Hydrolysis products generated from these two substrates were converted to glucose using beta-glucosidase and the glucose formed was determined enzymatically. Ten of the eleven Cthe enzymes were highly active on amorphous cellulose. The individual enzymes all produced <10% reducing sugar equivalents from filter paper. Combinations of Cthe cellulases gave higher conversions, with the combination of CelE, CelI, CelG, and CelK converting 34% of the crystalline cellulose. All eight Acel cellulases showed endo-cellulase activity and were highly active on PASC. Only Acel_0615 produced more than 10% reducing sugar equivalents from filter paper, and a combination of six Acel cellulases produced 32% conversion. Acel_0617, a GH48 exo-cellulase, and Acel_0619, a GH12 endo-cellulase, synergistically stimulated cellulose degradation by the combination of Cthe cellulases to almost 80%. Addition of both Acel enzymes to the Cthe enzyme mix did not further stimulate hydrolysis. Cthe CelG and CelI stimulated cellulose degradation by the combination of Acel cellulases to 66%.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-2
Author(s):  
Phillip Brumm
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document