scholarly journals Trichoderma reesei (Hypocrea jecorina) Bgl1 is a Novel, Exo-Acting Glucanase and Xylanase

2019 ◽  
Vol 1 (2) ◽  
pp. 19-30
Author(s):  
Phillip Brumm ◽  
Phillip Brumm ◽  
Dan Xie ◽  
Dan Xie ◽  
Larry Allen ◽  
...  

Trichoderma reeseiβ-glucosidase (Bgl1) is one of four enzymes demonstrated to act synergistically to degrade cellulose both in vitro and in vivo. Our work attempted to better understand the substrate specificity and potential biotechnological applications of Bgl1. T. reesei Bgl1H cleaves over 80% of the β-(1-4) and β-(1-3) linkages in β-glucan and 14% of the β-(1-4) linkages in amorphous cellulose, significantly more than any tested bacterial β-glucosidase. Bgl1H cleaves 50% of the β-(1-4) linkages in xyloglucan when supplemented with cellulase and α-xyloside. Approximately 20% conversion to glucose was obtained from insoluble β-(1,3)-linked curdlan using only Bgl1H; addition of a curdlanase resulted in conversion of approximately 70% of the curdlan to glucose. Bgl1H also produces xylose from xylooligosaccharides and debranched xylans. For both glucans and xylans, the relative rates of hydrolysis increase with increasing polysaccharide chain lengths. Bgl1H is able to partially degrade β-glucan in a variety of grain components; addition of endo-acting enzymes improved the enzyme’s performance on these grain components. The ability of this enzyme to produce monosaccharides from undigestible polysaccharides suggest it may have potential in improving utilization of carbohydrates in animal feed, fermentations, and other biotechnological applications.

1987 ◽  
Vol 43 (2) ◽  
pp. 195-200 ◽  
Author(s):  
P. Dokter ◽  
J.T. Pronk ◽  
B.J. Schie ◽  
J.P. Dijken ◽  
J.A. Duine

2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


2007 ◽  
Vol 2007 ◽  
pp. 197-197
Author(s):  
Hassan Fazaeli ◽  
Seyed Ahmad Mirhadi

Biological de-lignification of straw by white-rot fungi seems a promising way of improving its nutritive value. The bio-conversion of lignocellulosic materials is circumscribed to the group of white-rot fungi, of which some species of Pleurotus are capable of producing upgraded spent-straws as ruminant feed (Fazaeli et al., 2004). Treating of cereal straw with white-rot fungi as animal feed was studied by several workers (Gupta et al., 1993; Zadrazil, 1997). However, most of the trials were conducted at in vitro stage and used cell wall degradation and in vitro digestibility as an index to evaluate the biological treatments. This experiment was conducted to study the effect of fungal treatment on the voluntary intake, in vivo digestibility and nutritive value index of wheat straw obtained from short-term and long-term solid state fermentation (SSF).


2016 ◽  
Vol 9 (3) ◽  
pp. 419-433 ◽  
Author(s):  
E. Wielogórska ◽  
S. MacDonald ◽  
C.T. Elliott

In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.


2003 ◽  
Vol 69 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Nina Aro ◽  
Marja Ilmén ◽  
Anu Saloheimo ◽  
Merja Penttilä

ABSTRACT We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Δace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Δace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.


2003 ◽  
Vol 23 (21) ◽  
pp. 7611-7627 ◽  
Author(s):  
Kirk J. McManus ◽  
Michael J. Hendzel

ABSTRACT In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.


Parasitology ◽  
2019 ◽  
Vol 146 (10) ◽  
pp. 1233-1246 ◽  
Author(s):  
Francianne Oliveira Santos ◽  
Amanda Ponce Morais Cerqueira ◽  
Alexsandro Branco ◽  
Maria José Moreira Batatinha ◽  
Mariana Borges Botura

AbstractThe gastrointestinal nematodes (GIN) stand out as an important cause of disease in small ruminant, especially on goat farm. Widespread resistance to synthetic anthelminthics has stimulated the research for alternative strategies of parasite control, including the use of medicinal plants. The present work summarizes the in vitro and in vivo studies of plants with activity against GIN of goats, focusing on the description of chemical constituents related to this effect. This review retrieved 56 scientific articles from 2008 to 2018 describing more than 100 different plant species. The most frequently investigated family was Fabaceae (30.7%). Most in vitro studies on the activity of plant extracts and fractions were carried out with of free-living stages nematodes. In vivo studies were conducted mainly with the use of plants in animal feed and generally showed lower effectiveness compared to in vitro assays. The main plant secondary metabolites associated with anthelmintic effect are condensed tannins, saponin and flavonoids. However, the studies with compounds isolated from plants and elucidation of their mechanisms of action are scarce. Herbal medicines are thought to be promising sources for the development of effective anthelmintic agents.


Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Jorick Franceus ◽  
Tom Desmet

Abstract Glycoside phosphorylases in subfamily GH13_18 of the carbohydrate-active enzyme database CAZy catalyse the reversible phosphorolysis of α-glycosidic bonds. They contribute to a more energy-efficient metabolism in vivo, and can be applied for the synthesis of valuable glucosides, sugars or sugar phosphates in vitro. Continuing our efforts to uncover new phosphorylase specificities, we identified an enzyme from the myxobacterium Corallococcus coralloides DSM 2259 that does not feature the signature sequence patterns of previously characterised phosphorylases. The enzyme was recombinantly expressed and subjected to substrate screening. Although it was confirmed that the Corallococcus phosphorylase does not have the same substrate specificity as other phoshorylases from subfamily GH13_18, its true natural substrate remains a mystery for now. Myxobacteria have been widely investigated as producers of numerous bioactive secondary metabolites for decades, but little research has been conducted on myxobacterial proteins. The present study exemplifies the untapped metabolic activities and functional diversity that these fascinating organisms may have left to show.


Sign in / Sign up

Export Citation Format

Share Document