Distribution of Flow Across the Radius of an Axisymmetric Shock Tube With Variable Cross-Sectional Area

Author(s):  
Stephen J. Schraml ◽  
Richard J. Pearson

Abstract Experiments were conducted to study the characteristics of unsteady flow in a small, axisymmetric shock tube. These experiments have been supplemented by calculational results obtained from the SHARC hydrodynamic computer code. Early calculational results indicated that a substantial gradient in flow velocity and dynamic pressure may exist along the cross-section of the shock tube. To further investigate this phenomenon, a series of experiments was performed in which dynamic pressure measurements were made at various radii in the expansion section of the shock tube. Additional calculations with the SHARC code were also performed in which turbulence modelling, artificial viscosity and second order advection were employed. The second set of calculations agree very well with the experimental results. These results indicate that the dynamic pressure is nearly constant across the radius of the shock tube. This contradicts the early computational results which were performed with first order advection and without turbulence modelling. As a result of these findings, it was concluded that turbulence modelling was necessary to obtain accurate shock tube flow simulations.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4470
Author(s):  
Eynas Amer ◽  
Mikolaj Wozniak ◽  
Gustav Jönsson ◽  
Fredrik Arrhén

Accurate dynamic pressure measurements are increasingly important. While traceability is lacking, several National Metrology Institutes (NMIs) and calibration laboratories are currently establishing calibration capacities. Shock tubes generating pressure steps with rise times below 1 µs are highly suitable as standards for dynamic pressures in gas. In this work, we present the results from applying a fast-opening valve (FOV) to a shock tube designed for dynamic pressure measurements. We compare the performance of the shock tube when operated with conventional single and double diaphragms and when operated using an FOV. Different aspects are addressed: shock-wave formation, repeatability in amplitude of the realized pressure steps, the assessment of the required driver pressure for realizing nominal pressure steps, and economy. The results show that using the FOV has many advantages compared to the diaphragm: better repeatability, eight times faster to operate, and enables automation of the test sequences.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


Author(s):  
Osama Abdelkarim ◽  
Julian Fritsch ◽  
Darko Jekauc ◽  
Klaus Bös

Physical fitness is an indicator for children’s public health status. Therefore, the aim of this study was to examine the construct validity and the criterion-related validity of the German motor test (GMT) in Egyptian schoolchildren. A cross-sectional study was conducted with a total of 931 children aged 6 to 11 years (age: 9.1 ± 1.7 years) with 484 (52%) males and 447 (48%) females in grades one to five in Assiut city. The children’s physical fitness data were collected using GMT. GMT is designed to measure five health-related physical fitness components including speed, strength, coordination, endurance, and flexibility of children aged 6 to 18 years. The anthropometric data were collected based on three indicators: body height, body weight, and BMI. A confirmatory factor analysis was conducted with IBM SPSS AMOS 26.0 using full-information maximum likelihood. The results indicated an adequate fit (χ2 = 112.3, df = 20; p < 0.01; CFI = 0.956; RMSEA = 0.07). The χ2-statistic showed significant results, and the values for CFI and RMSEA showed a good fit. All loadings of the manifest variables on the first-order latent factors as well as loadings of the first-order latent factors on the second-order superordinate factor were significant. The results also showed strong construct validity in the components of conditioning abilities and moderate construct validity in the components of coordinative abilities. GMT proved to be a valid method and could be widely used on large-scale studies for health-related fitness monitoring in the Egyptian population.


2020 ◽  
Vol 87 (10) ◽  
pp. 630-636
Author(s):  
Oliver Slanina ◽  
Susanne Quabis ◽  
Robert Wynands

AbstractTo ensure the safety of users like hunters and sports shooters, the dynamic pressure inside an ammunition cartridge must not exceed a maximum value. We have investigated the reproducibility of the dynamic measurement of the gas pressure inside civilian ammunition cartridges during firing, when following the rules formulated by the Permanent International Commission for the Proof of Small Arms (C. I. P.). We find an in-house spread of 0.8 % between maximum and minimum pressure for runs with the same barrel and of 1.8 % among a set of three barrels. This sets a baseline for the expected agreement in measurement comparisons between different laboratories. Furthermore, a difference of more than 3 % is found in a preliminary study of the influence of ammunition storage conditions.


2000 ◽  
Author(s):  
Wojtek J. Bock ◽  
Magdalena S. Nawrocka ◽  
Waclaw Urbanczyk

2013 ◽  
Vol 722 ◽  
pp. 159-186 ◽  
Author(s):  
Sukalyan Bhattacharya ◽  
Dil K. Gurung ◽  
Shahin Navardi

AbstractThis article describes the radial drift of a suspended sphere in a cylinder-bound Poiseuille flow where the Reynolds number is small but finite. Unlike past studies, it considers a circular narrow conduit whose cross-sectional diameter is only $1. 5$–$6$ times the particle diameter. Thus, the analysis quantifies the effect of fluid inertia on the radial motion of the particle in the channel when the flow field is significantly influenced by the presence of the suspended body. To this end, the hydrodynamic fields are expanded as a series in Reynolds number, and a set of hierarchical equations for different orders of the expansion is derived. Accordingly, the zeroth-order fields in Reynolds number satisfy the Stokes equation, which is accurately solved in the presence of the spherical particle and the cylindrical conduit. Then, recognizing that in narrow vessels Stokesian scattered fields from the sphere decrease exponentially in the axial direction, a simpler regular perturbation scheme is used to quantify the first-order inertial correction to hydrodynamic quantities. Consequently, it is possible to obtain two results. First, the sphere is assumed to follow the axial motion of a freely suspended sphere in a Stokesian condition, and the radial lift force on it due to the presence of fluid inertia is evaluated. Then, the approximate motion is determined for a freely suspended body on which net hydrodynamic force including first-order inertial lift is zero. The results agree well with the available experimental results. Thus, this study along with the measured data would precisely describe particle dynamics inside narrow tubes.


1993 ◽  
Vol 183 (1) ◽  
pp. 217-248 ◽  
Author(s):  
S. Sunada ◽  
K. Kawachi ◽  
I. Watanabe ◽  
A. Azuma

A series of experiments on three-dimensional ‘near fling’ was carried out. Two pairs of plates, rectangular and triangular, were selected, and the distance between the rotation axes of the two plates of each pair was varied. The motion of the plates as well as the forces and the moment were measured, and the interference between the two plates of a pair was studied. In addition, a method of numerical calculation was developed to aid in the understanding of the experimental results. The interference between the two plates of a pair, which acted to increase both the added mass of each plate and the hydrodynamic force due to dynamic pressure, was noted only when the opening angle between the plates was small. The hydrodynamic forces were strongly influenced by separated vortices that occurred during the rotation. A method of numerical calculation, which took into account the effect both of interference between the plates and of separated vortices, was developed to give adequate accuracy in analyzing beating wings in ‘near fling’.


2016 ◽  
Vol 60 (03) ◽  
pp. 145-155
Author(s):  
Ya-zhen Du ◽  
Wen-hua Wang ◽  
Lin-lin Wang ◽  
Yu-xin Yao ◽  
Hao Gao ◽  
...  

In this paper, the influence of the second-order slowly varying loads on the estimation of deck wetness is studied. A series of experiments related to classic cylindrical and new sandglass-type Floating Production, Storage, and Offloading Unit (FPSO) models are conducted. Due to the distinctive configuration design, the sand glass type FPSO model exhibits more excellent deck wetness performance than the cylindrical one in irregular waves. Based on wave potential theory, the first-order wave loads and the full quadratic transfer functions of second-order slowly varying loads are obtained by the frequency-domain numerical boundary element method. On this basis, the traditional spectral analysis only accounting for the first-order wave loads and time-domain numerical simulation considering both the first-order wave loads and nonlinear second-order slowly varying wave loads are employed to predict the numbers of occurrence of deck wetness per hour of the two floating models, respectively. By comparing the results of the two methods with experimental data, the shortcomings of traditional method based on linear response theory emerge and it is of great significance to consider the second-order slowly drift motion response in the analysis of deck wetness of the new sandglass-type FPSO.


Sign in / Sign up

Export Citation Format

Share Document