Ductile Fracture in ASTM A992 Steel Tensile Specimens at Elevated Temperatures

2022 ◽  
Author(s):  
Wenyu Cai ◽  
Mohammed A. Morovat ◽  
Michael D. Engelhardt ◽  
Guo-Qiang Li
2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2011 ◽  
Vol 264-265 ◽  
pp. 813-818 ◽  
Author(s):  
Sang Woo Kim ◽  
Young Seon Lee ◽  
Beom Soo Kang

In this work, in order to predict the forming failure of AZ31 magnesium alloy sheet in drawing process at elevated temperatures, a series of square cup tests at various temperatures and FE analyses were carried out. The critical damage values and the mechanical properties dependent on strain rates and temperatures were evaluated from uniaxial tensile tests and those were utilized to the forming failure prediction using FE analysis. Based on the plastic deformation history obtained from FE analysis and Cockcroft and Latham’s ductile fracture criterion, the fracture initiation time and location were predicted and verified with the experimental results.


2014 ◽  
Vol 24 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Y. C. Lin ◽  
Yan-Xing Liu ◽  
Ge Liu ◽  
Ming-Song Chen ◽  
Yuan-Chun Huang

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 767
Author(s):  
Yazhi Zhu ◽  
Shiping Huang ◽  
Hizb Sajid

This paper aims to (1) study ductile fracture behavior, and (2) provide a computational tool for predicting fracture initiation in ASTM A572 Gr. 50 structural steels under axisymmetric tension loading are heated to elevated temperatures and cooled down in air and in water. Employing the post-fire test results reported in the literature for A572 Gr. 50 steels, this paper carries out coupon-level finite element (FE) simulations to capture the stress and strain fields and explore the micro-mechanism of post-fire fracture in ASTM A572 Gr. 50 steels, respectively. Numerical results show that the effects of the experienced temperature and cooling method on fracture parameters are more significant for the steels cooled after being heated to temperatures from 800 °C to 1000 °C than those from 500 °C to 700 °C, due to microstructural changes during the cooling process. Air-cooled and water-cooled specimens show an improvement and a significant reduction in ductility, respectively. A modified void growth model (VGM) is proposed by introducing two additional temperature-dependent functions, through which the effects of elevated temperature and cooling method on fracture behavior are quantitatively analyzed. Limitations of this study are also discussed.


Author(s):  
Nguyen Duc-Toan ◽  
Kim Young-Suk

The aim of this study involved evaluating and predicting forming limit curves of boron steel 22MnB5 sheet at elevated temperatures. A finite-element method simulation was adopted based on ductile fracture criteria and simple experiments at elevated temperatures. First, tensile experimental data and ductile fracture criterions of Johnson–Cook and ductile void growth models were input to ABAQUS/Explicit software to predict and compare the same with fracture occurrence in experiments performed via Hecker’s punch stretching tests at room temperature. Subsequently, punch stretching test data at room temperature were added to correct the fracture strain locus in the space of the stress triaxiality and the equivalent strain following the ductile void growth model. After confirming the accuracy of the forming limit curve prediction at room temperature, fracture strain loci at high temperatures using ductile void growth model were determined based on the average ratio between the fracture equivalent plastic strains at room temperature as well as higher temperatures. Finally, Hecker’s punch stretching tests were numerically simulated to predict forming limit curve(s) of boron steel 22MnB5 sheet at high temperatures.


2015 ◽  
Vol 22 (10) ◽  
pp. 1082-1091 ◽  
Author(s):  
Lei Yang ◽  
Bao-yu Wang ◽  
Jian-guo Lin ◽  
Hui-jun Zhao ◽  
Wen-yu Ma

Sign in / Sign up

Export Citation Format

Share Document